请输入您要查询的百科知识:

 

词条 K-MEANS算法
释义

K-MEANS算法是输入聚类个数k,以及包含 n个数据对象的数据库,输出满足方差最小标准的k个聚类。

基本简介

k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。

处理流程

k-means 算法基本步骤

(1) 从 n个数据对象任意选择 k 个对象作为初始聚类中心;

(2) 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;

(3) 重新计算每个(有变化)聚类的均值(中心对象);

(4) 计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2)。

算法分析和评价

k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。

k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。

算法的时间复杂度上界为O(n*k*t), 其中t是迭代次数。

k-means算法是一种基于样本间相似性度量的间接聚类方法,属于非监督学习方法。此算法以k为参数,把n 个对象分为k个簇,以使簇内具有较高的相似度,而且簇间的相似度较低。相似度的计算根据一个簇中对象的平均值(被看作簇的重心)来进行。此算法首先随机选择k个对象,每个对象代表一个聚类的质心。对于其余的每一个对象,根据该对象与各聚类质心之间的距离,把它分配到与之最相似的聚类中。然后,计算每个聚类的新质心。重复上述过程,直到准则函数会聚。k-means算法是一种较典型的逐点修改迭代的动态聚类算法,其要点是以误差平方和为准则函数。逐点修改类中心:一个象元样本按某一原则,归属于某一组类后,就要重新计算这个组类的均值,并且以新的均值作为凝聚中心点进行下一次象元素聚类;逐批修改类中心:在全部象元样本按某一组的类中心分类之后,再计算修改各类的均值,作为下一次分类的凝聚中心点。

实现方法

补充一个Matlab实现方法:

function [cid,nr,centers] = cskmeans(x,k,nc)

% CSKMEANS K-Means clustering - general method.

%

% This implements the more general k-means algorithm, where

% HMEANS is used to find the initial partition and then each

% observation is examined for further improvements in minimizing

% the within-group sum of squares.

%

% [CID,NR,CENTERS] = CSKMEANS(X,K,NC) Performs K-means

% clustering using the data given in X.

%

% INPUTS: X is the n x d matrix of data,

% where each row indicates an observation. K indicates

% the number of desired clusters. NC is a k x d matrix for the

% initial cluster centers. If NC is not specified, then the

% centers will be randomly chosen from the observations.

%

% OUTPUTS: CID provides a set of n indexes indicating cluster

% membership for each point. NR is the number of observations

% in each cluster. CENTERS is a matrix, where each row

% corresponds to a cluster center.

%

% See also CSHMEANS

% W. L. and A. R. Martinez, 9/15/01

% Computational Statistics Toolbox

warning off

[n,d] = size(x);

if nargin < 3

% Then pick some observations to be the cluster centers.

ind = ceil(n*rand(1,k));

% We will add some noise to make it interesting.

nc = x(ind,:) + randn(k,d);

end

% set up storage

% integer 1,...,k indicating cluster membership

cid = zeros(1,n);

% Make this different to get the loop started.

oldcid = ones(1,n);

% The number in each cluster.

nr = zeros(1,k);

% Set up maximum number of iterations.

maxiter = 100;

iter = 1;

while ~isequal(cid,oldcid) & iter < maxiter

% Implement the hmeans algorithm

% For each point, find the distance to all cluster centers

for i = 1:n

dist = sum((repmat(x(i,:),k,1)-nc).^2,2);

[m,ind] = min(dist); % assign it to this cluster center

cid(i) = ind;

end

% Find the new cluster centers

for i = 1:k

% find all points in this cluster

ind = find(cid==i);

% find the centroid

nc(i,:) = mean(x(ind,:));

% Find the number in each cluster;

nr(i) = length(ind);

end

iter = iter + 1;

end

% Now check each observation to see if the error can be minimized some more.

% Loop through all points.

maxiter = 2;

iter = 1;

move = 1;

while iter < maxiter & move ~= 0

move = 0;

% Loop through all points.

for i = 1:n

% find the distance to all cluster centers

dist = sum((repmat(x(i,:),k,1)-nc).^2,2);

r = cid(i); % This is the cluster id for x

%%nr,nr+1;

dadj = nr./(nr+1).*dist'; % All adjusted distances

[m,ind] = min(dadj); % minimum should be the cluster it belongs to

if ind ~= r % if not, then move x

cid(i) = ind;

ic = find(cid == ind);

nc(ind,:) = mean(x(ic,:));

move = 1;

end

end

iter = iter+1;

end

centers = nc;

if move == 0

disp('No points were moved after the initial clustering procedure.')

else

disp('Some points were moved after the initial clustering procedure.')

end

warning on

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/4 7:37:55