词条 | 和差化积 |
释义 | 正弦、余弦的和差化积公式指高中数学三角函数部分的一组恒等式 sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】 以上四组公式可以由积化和差公式推导得到 证明过程法1sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程 因为 sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sin αcos β, 设 α+β=θ,α-β=φ 那么 α=(θ+φ)/2, β=(θ-φ)/2 把α,β的值代入,即得 sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2] 法2 根据欧拉公式,e ^Ix=cosx+isinx 令x=a+b 得e ^I(a+b)=e^ia*e^ib=(cosa+isina)(cosb+isinb)=cosacosb-sinasinb+i(sinacosb+sinbcosa)=cos(a+b)+isin(a+b) 所以cos(a+b)=cosacosb-sinasinb sin(a+b)=sinacosb+sinbcosa 正切的和差化积tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明) cotα±cotβ=sin(β±α)/(sinα·sinβ) tanα+cotβ=cos(α-β)/(cosα·sinβ) tanα-cotβ=-cos(α+β)/(cosα·sinβ) 证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ =(sinα·cosβ±cosα·sinβ)/(cosα·cosβ) =sin(α±β)/(cosα·cosβ)=右边 ∴等式成立 注意事项在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次 口诀 正加正,正在前,余加余,余并肩 正减正,余在前,余减余,负正弦 反之亦然 生动的口诀:(和差化积) 帅+帅=帅哥 帅-帅=哥帅 哥+哥=哥哥 哥-哥=负嫂嫂 反之亦然 语文老师教的口诀: 口口之和仍口口 cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] 赛赛之和赛口留 sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] 口口之差负赛赛 cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 赛赛之差口赛收 sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2] 另一口诀: 正和正在先,sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] 正差正后迁,sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2] 余和一色余,cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] 余差翻了天,cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 记忆方法和差化积公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了各自的简单记忆方法。 如何只记两个公式甚至一个我们可以只记上面四个公式的第一个和第三个。 而第二个公式中的-sin β=sin(β+π),也就是sin α-sin β=sin α+sin(β+π),这就可以用第一个公式解决。 同理第四个公式中,cos α-cos β=cos α+cos( β+π),这就可以用第三个公式解决。 如果对诱导公式足够熟悉,可以在运算时把cos全部转化为sin,那样就只记住第一个公式就行了。 用的时候想得起一两个就行了。 结果乘以2这一点最简单的记忆方法是通过三角函数的值域判断。sin和cos的值域都是[-1,1],其积的值域也应该是[-1,1],而和差的值域却是[-2,2],因此乘以2是必须的。 也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如: cos(α-β)-cos(α+β) =[(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)] =2sinαsinβ 故最后需要乘以2。 只有同名三角函数能和差化积无论是正弦函数还是余弦函数,都只有同名三角函数的和差能够化为乘积。这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了。 乘积项中的角要除以2在和差化积公式的证明中,必须先把α和β表示成两角和差的形式,才能够展开。熟知要使两个角的和、差分别等于α和β,这两个角应该是(α+β)/2和(α-β)/2,也就是乘积项中角的形式。 注意和差化积和积化和差的公式中都有一个“除以2”,但位置不同;而只有和差化积公式中有“乘以2”。 使用哪两种三角函数的积这一点较好的记忆方法是拆分成两点,一是是否同名乘积,二是“半差角”(α-β)/2的三角函数名。 是否同名乘积,仍然要根据证明记忆。注意两角和差公式中,余弦的展开中含有两对同名三角函数的乘积,正弦的展开则是两对异名三角函数的乘积。所以,余弦的和差化作同名三角函数的乘积;正弦的和差化作异名三角函数的乘积。 (α-β)/2的三角函数名规律为:和化为积时,以cos(α-β)/2的形式出现;反之,以sin(α-β)/2的形式出现。 由函数的奇偶性记忆这一点是最便捷的。如果要使和化为积,那么α和β调换位置对结果没有影响,也就是若把(α-β)/2替换为(β-α)/2,结果应当是一样的,从而(α-β)/2的形式是cos(α-β)/2;另一种情况可以类似说明。 余弦-余弦差公式中的顺序相反/负号这是一个特殊情况,完全可以死记下来。 当然,也有其他方法可以帮助这种情况的判定,如(0,π]内余弦函数的单调性。因为这个区间内余弦函数是单调减的,所以当α大于β时,cosα小于cosβ。但是这时对应的(α+β)/2和(α-β)/2在(0,π)的范围内,其正弦的乘积应大于0,所以要么反过来把cosβ放到cosα前面,要么就在式子的最前面加上负号。 |
随便看 |
|
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。