词条 | 哈达玛矩阵 |
释义 | 哈达玛(Hadamard)矩阵是由+1和-1元素构成的正交方阵。所谓正交方阵,指它的任意两行(或两列)都是正交的,且任意一行(列)的所有元素的平方和等于方阵的阶数。即:设A为n阶由+1和-1元素构成的方阵,若AA‘=nI(这里A’为A的转置,I为单位方阵),则称A为n阶Hadamard矩阵。 已有人证明,Hadamard矩阵的阶数都是4的倍数。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。