请输入您要查询的百科知识:

 

词条 隔板法
释义

隔板法就是在n个元素间插入(b-1)个板,即把n个元素分成b组的方法。

允许若干个人(或位置)为空的问题

例1将20个大小形状完全相同的小球放入3个不同的盒子,允许有盒子为空,但球必须放完,有多少种不同的方法?

分析:本题中的小球大小形状完全相同,故这些小球没有区别,问题等价于将小球分成三组,允许有若干组无元素,用隔板法.

解析:将20个小球分成三组需要两块隔板,将20个小球及两块隔板排成一排,两块隔板将小球分成三块,从左到右看成三个盒子应放的球数,每一种隔板与球的排法对应一种分法.将20个小球和2块隔板排成一排有22个位置,先从这22个位置中取出两个位置放隔板,因隔板无差别,故隔板之间无序,是组合问题,故隔板有C22 2种不同的放法,再将小球放入其他位置,由于小球与隔板都无差别,故小球之间无序,只有1种放法,根据分步计数原理,共有C22 2×1=231种不同的方法.

点评:对n件相同物品(或名额)分给m个人(或位置),允许若干个人(或位置)为空的问题,可以看成将这n件物品分成m组,允许若干组为空的问题.将n件物品分成m组,需要m-1块隔板,将这n件物品和m-1块隔板排成一排,占n+m-1位置,从这n+m-1个位置中选m-1个位置放隔板,因隔板无差别,故隔板之间无序,是组合问题,故隔板有Cn+m-1 m-1种不同的方法,再将物品放入其余位置,因物品相同无差别,故物品之间无顺序,是组合问题,只有1种放法,根据分步计数原理,共有Cn+m-1 m-1×1=Cn+m-1 m-1种排法,因m-1块隔板将n件相同物品分成m块,从左到右可以看成每人所得的物品数,每一种隔板与物品的排法对应于一种分法,故有Cn+m-1 m-1种分法.

每人(或位置)必须有物品问题

例2将20个优秀学生名额分给18个班,每班至少1个名额,有多少种不同的分配方法?

分析:本题是名额分配问题,用隔板法.

解析:将20个名额分配给18个班,每班至少1个名额,相当于将20个相同的小球分成18组,每组至少1个,将20个相同的小球分成18组,需要17块隔板,先将20个小球排成一排,因小球相同,故小球之间无顺序,是组合,只有1种排法,再在20个小球之间的19个空档中,选取17个位置放隔板,因隔板无差别,故隔板之间无序,是组合问题,故隔板有C19 17种不同的放法,根据分步计数原理,共有C19 17种不同的方法,因17块隔板将20个小球分成18组,从左到右可以看成每班所得的名额数,每一种隔板与小球的排法对应于一种分法,故有Cn+m-1 m-1种分法.

点评::对n件相同物品(或名额)分给m个人(或位置),每个人(或位置)必须有物品问题,可以看成将这n件物品分成m组,每组不空的问题.将n件物品分成m组,需要m-1块隔板,将这n件物品排成一排,因物品无差别,故物品之间无顺序,是组合问题,只有1种排法,再在这n件物品之间的n-1空档中选取m-1个位置放隔板,占n+m-1位置,从这n+m-1个位置中选m-1个位置放隔板,因隔板无差别,故隔板之间无序,是组合问题,故隔板有Cn-1 m-1种不同的放法,根据分步计数原理,共有1×Cn-1 m-1=Cn-1 m-1种不同排法,因m-1块隔板将n件相同物品分成m块,从左到右可以看成每人所得的物品数,每一种隔板与物品的排法对应于一种分法,故有Cn-1 m-1种分法.

对相同物品分配问题,注意某若干组能否为空,能为空和不能为不空,方法不同,要体会和掌握.

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/25 5:59:10