请输入您要查询的百科知识:

 

词条 高精度计算
释义

高精度运算,是指参与运算的数(加数,减数,因子……)范围大大超出了标准数据类型(整型,实型)能表示的范围的运算。例如,求两个200位的数的和。这时,就要用到高精度算法了。

概述

所谓的高精度运算,是指参与运算的数(加数,减数,因子……)范围大大超出了标准数据类型(整型,实型)能表示的范围的运算。例如,求两个200位的数的和。这时,就要用到高精度算法了。在这里,我们先讨论高精度加法。

高精度加法

高精度运算主要解决以下三个问题:

一、加数、减数、运算结果的输入和存储

运算因子超出了整型、实型能表示的范围,肯定不能直接用一个数的形式来表示。在Pascal中,能表示多个数的数据类型有两种:数组和字符串。

数组:每个数组元素存储1位(在优化时,这里是一个重点!),有多少位就需要多少个数组元素;用数组表示数的优点:每一位都是数的形式,可以直接加减;运算时非常方便。用数组表示数的缺点:数组不能直接输入;输入时每两位数之间必须有分隔符,不符合数值的输入习惯;

字符串:String型字符串的最大长度是255,可以表示255位。Ansistring型字符串长度不受限制。用字符串表示数的优点:能直接输入输出,输入时,每两位数之间不必分隔符,符合数值的输入习惯;用字符串表示数的缺点:字符串中的每一位是一个字符,不能直接进行运算,必须先将它转化为数值再进行运算;运算时非常不方便;

综合以上所述,对上面两种数据结构取长补短:用字符串读入数据,用数组存储数据:

var st:string;

x,y:array[0..255]of integer;{定义两个数组,X和Y,用来储存数}

i,j,l1,l2:integer;

begin

readln(st);

l1:=length(st);{------length(x),该函数是获取字符串X的长度,返回为整型}

for i:=0 to 255 do x[i]:=0;{数组初始化,该句等价于‘fillchar(x,sizeof(x),o);’,即给一数组整体赋值,但运行速度快于用‘for’语句对数组中的每一个数赋值}

for i:=l1 downto 1 do

x[l1-i+1]:=ord(st[i])-ord('0');{------这里是重点,把字符串转换为数值,储存在数组中}

readln(st);

l2:=length(st);{------length(x),该函数是获取字符串X的长度,返回为整型}

for i:=0 to 255 do y[i]:=0;{数组初始化,该句等价于‘fillchar(y,sizeof(y),o);’}

for i:=l2 downto 1 do

y[l2-i+1]:=ord(st[i])-ord('0');{------这里是重点,把字符串转换为数值,储存在数组中}

对字符串转为数值原理补充:ord(x)-48,如果X='1',因为'1'的ASCLL码是49,所以减去48就等于1,间接地把字符转换为数值了,各位初手要好好体会.

二、运算过程

在往下看之前,大家先列竖式计算35+86。

注意的问题:

(1)运算顺序:两个数靠右对齐;从低位向高位运算;先计算低位再计算高位;

(2)运算规则:同一位的两个数相加再加上从低位来的进位,成为该位的和;这个和去掉向高位的进位就成为该位的值;如上例:3+8+1=12,向前一位进1,本位的值是2;可借助MOD、DIV运算完成这一步;

(3)最后一位的进位:如果完成两个数的相加后,进位位值不为0,则应添加一位;

(4)如果两个加数位数不一样多,则按位数多的一个进行计算;

if l1<l2 then l1:=l2;

for i:=1 to l1 do

begin

x[i]:=x[i]+y[i];

x[i+1]:=x[i+1]+x[i] div 10;

x[i]:=x[i] mod 10;

end;

三、结果的输出(这也是优化的一个重点)

按运算结果的实际位数输出

var st:string;

x,y:array[0..255]of integer;

i,j,l1,l2:integer;

begin

readln(st);

l1:=length(st);

for i:=0 to 255 do x[i]:=0;

for i:=l1 downto 1 do

x[l1-i+1]:=ord(st[i])-ord('0');

readln(st);

l2:=length(st);

for i:=0 to 255 do y[i]:=0;

for i:=l2 downto 1 do

y[l2-i+1]:=ord(st[i])-ord('0');

if l1<l2 then l1:=l2;

for i:=1 to l1 do

begin

x[i]:=x[i]+y[i];

x[i+1]:=x[i+1]+x[i] div 10;

x[i]:=x[i] mod 10;

end;

write('x+y=');

j:=255;

while x[j]=0 do j:=j-1;

for i:=j downto 1 do write(x[i]);

readln;

end.

四、优化:

以上的方法的有明显的缺点:

(1)浪费空间:一个整型变量(-32768~32767)只存放一位(0~9);

(2)浪费时间:一次加减只处理一位;

针对以上问题,我们做如下优化:一个数组元素存放四位数;(integer的最大范围是32767,5位的话可能导致出界)将标准数组改为紧缩数组。第一步的具体方法:

l:=length(s1);

k1:=260;

repeat {————有关字符串的知识}

s:=copy(s1,l-3,4);

val(s,a[k1],code);

k1:=k1-1;

s1:=copy(s1,1,l-4);

l:=l-4;

until l<=0;

k1:=k1+1;

而因为这个改进,算法要相应改变:

(1)运算时:不再逢十进位,而是逢万进位(mod 10000; div 10000);

(2)输出时:最高位直接输出,其余各位,要判断是否足够4位,不足部分要补0;例如:1,23,2345这样三段的数,输出时,应该是100232345而不是1232345。

改进后的算法:

program add;

var s,s1,s2:string;

a,b,c:array[1..260]of integer; {260是随便取的}

x,y,k,i,l,k1,k2,code:longint;

begin

readln(s1);

readln(s2);

l:=length(s1);

k1:=260;

repeat

s:=copy(s1,l-3,4);

val(s,a[k1],code);

dec(k1);

s1:=copy(s1,1,l-4);

l:=l-4;

until l<=0;

k1:=k1+1;

l:=length(s2);

k2:=260;

repeat

s:=copy(s2,l-3,4);

val(s,b[k2],code);

dec(k2);

s2:=copy(s2,1,l-4);

dec(l,4);

until l<=0;

inc(k2);

if k1<k2 then k:=k1 else k:=k2;

y:=0;

for i:=260 downto k do

begin

x:=a[i]+b[i]+y;

c[i]:=x mod 10000;

y:=x div 10000;

end;

write(c[k]);

for i:=k+1 to 260 do

begin

if c[i]<1000 then write('0');

if c[i]<100 then write('0');

if c[i]<10 then write('0');

write(c[i]);

end;

end.

高精度减法

和高精度加法相比,减法在差为负数时处理的细节更多一点:当被减数小于减数时,差为负数,差的绝对值是减数减去被减数;在程序实现上用一个变量来存储符号位,用另一个数组存差的绝对值。

算法流程:(1).读入被减数S1,S2(字符串);

(2).置符号位:判断被减数是否大于减数:大则将符号位置为空;小则将符号位置为“- ”,交换减数与被减数;

(3).被减数与减数处理成数值,放在数组中;

(4).运算:A、取数;

B、判断是否需要借位;

C、减,将运算结果放到差数组相应位中;

D、判断是否运算完成:是,转5;不是,转A;

(5).打印结果:符号位,第1位,循环处理第2到最后一位;

细节:▲如何判断被减数与减数的大小?

如果位数一样,直接比较字符串大小;否则,位数多的大。

k1:=length(s1); k2:=length(s2);

if k1=k2 then

if s1<s2 then begin fh:='-'; s:=s1;s1:=s2; s2:=s;end

else if k1<k2 then begin fh:='-';s:=s1;s1:=s2;s2:=s;end;{s1存被减数,fh存符号}

将字符串处理成数值:

l:=length(s1);{求出s1的长度,也即s1的位数;有关字符串的知识。}

k1:=260;

for i:=l downto 1 do

begin

a[k1]:=ord(s1[i])-48;{将字符转成数值}

k1:=k1-1;

end;

k1:=k1+1;

运算(减法跟加法比较,减法退位处理跟加法进位处理不一样):

处理退位: 跟加法一样,在for语句外面先将退位清零,用被减数再减去退位,{注意:由于每一个数位不一定都得向前一位借位,所以这里退位得清零。例如,234-25,个位需借位,而十位不用} 接着,再判断,当被减数某一位不够减时,则需加上前一位退位过来的数。注意:由于这里采用优化方法,所以退一位,就等于后一位加上10000。)最后,再拿一个数组来存储两个减数的差。

jw:=0;

for i:=260 downto k1 do

begin

a[i]:=a[i]-jw;{此处jw为从刚处理的那一位上从本一位上的借位}

jw:=0; {此处jw为I 位准备向高一位的借位}

if a[i]<b[i] then

begin

jw:=1;

a[i]:=a[i]+10000;

end;

c[i]:=a[i]-b[i]

end;

打印结果: 先找到差的第一个非零数,如果差的所有位数都为零,就直接输出零; 如果不是,就输出符号位和差的第一位。剩下部分,打印补足零;因为优化后的高精度减法,是把每四个数位分成一段,而每一段则必须有四个数,当有一段不足四个数时,就得用"0"补足.(如:第一位是'1',第二位是'34',第三位是'345',第四位是'8', 则应写为'1003403450008').注意:第一位不用补零,(如:第一位为'3',则写成'3').

while (c[k]=0) and (k<=260) do k:=k+1;

if k>260 then write('0')

else begin

write(fh,c[k]);{k是差的第1位;}

for i:=k+1 to 260 do

begin

if c[i]<100 then write('0');

if c[i]<10 then write('0');

write(c[i]);

end;

end;

参考程序:

program ZDloveQC;

var s1,s2,s3,s4,s:string;

a,b,c:array[1..260]of integer;

i,k1,k2,l,code,jw:longint;

fh:string;

begin

readln(s1); readln(s2);

k1:=length(s1); k2:=length(s2); fh:='';

if k1=k2 then

if s1<s2 then begin fh:='-';s:=s1; s1:=s2; s2:=s; end

else

if k1<k2 then begin fh:='-';s:=s1; s1:=s2; s2:=s; end;

k1:=260;

l:=length(s1);

repeat

s3:=copy(s1,l-3,4);

val(s3,a[k1],code);

dec(k1);

s1:=copy(s1,1,l-4);

l:=l-4;

until l<=0;

inc(k1);

l:=length(s2);

k2:=260;

repeat

s4:=copy(s2,l-3,4);

val(s4,b[k2],code);

dec(k2);

s2:=copy(s2,1,l-4);

l:=l-4;

until l<=0;

inc(k2);

jw:=0;

for i:=260 downto k1 do

begin

a[i]:=a[i]-jw;

jw:=0;

if a[i]<b[i] then

begin

jw:=1;

a[i]:=a[i]+10000;

end;

c[i]:=a[i]-b[i];

end;

while (c[k1]=0)and(k1<260) do inc(k1);

if k1>260 then writeln('0')

else begin

write(fh,c[k1]);

for i:=k1+1 to 260 do

begin

if c[i]<1000 then write('0');

if c[i]<100 then write('0');

if c[i]<10 then write('0');

write(c[i]);

end;

end;

end.

高精度乘法

高精度乘法基本思想和加法一样。其基本流程如下:

①读入被乘数s1,乘数s2

②把s1、s2分成4位一段,转成数值存在数组a,b中;记下a,b的长度k1,k2;

③i赋为b中的最低位;

④从b中取出第i位与a相乘,累加到另一数组c中;(注意:累加时错开的位数应是多少位?)

⑤i:=i-1;检测i值:小于k2则转⑥,否则转④

⑥打印结果

参考程序:

program chengfa;

const n=100;

type ar=array [1..n] of integer;

var a,b:ar; k1,k2,k:integer;

c:array [1..200] of integer;

s1,s2:string;

procedure fenge(s:string;var d:ar; var kk:integer); {将s分割成四位一组存放在d中,返回的kk值指向d的最高位}

var ss:string;

i,code:integer;

begin

i:=length(s);

kk:=n;

repeat

ss:=copy(s,i-3,4);

val(ss,d[kk],code);

kk:=kk-1;

s:=copy(s,1,i-4);

i:=i-4;

until i<0;

kk:=kk+1;

end;

procedure init;

var i:integer;

begin

for i:=1 to n do begin a:=0; b:=0; end;

for i:=1 to 2*n do c:=0;

write('input 2 numbers:');

readln(s1);

readln(s2);

fenge(s1,a,k1);

fenge(s2,b,k2);

end;

procedure jisuan;

var i,j,m:integer; x,y,z,jw:longint;

begin

i:=n; k:=2*n;

repeat

x:=b; z:=0; m:=k; jw:=0;

for j:=n downto k1 do

begin

y:=a[j];

z:=c[m];

x:=x*y+z+jw;

jw:=x div 10000;

c[m]:=x mod 10000;

m:=m-1;

x:=b;

end;

if jw<>0 then c[m]:=jw else m:=m+1;

i:=i-1;

k:=k-1;

until i<k2;

k:=m;

end;

procedure daying;

var i:integer;

begin

write(c[k]);

for i:=k+1 to 2*n do

begin

if c<1000 then write('0');

if c<100 then write('0');

if c<10 then write('0');

write(c);

end;

writeln;

end;

begin

init;

jisuan;

daying;

end.

教材“基础编”P87高精乘法参考程序:

program ex3_1;

var

a,b,c:array[0..1000] of word;

procedure init;

var

s:string;

ok,i,j:integer;

begin

readln(s);

a[0]:=length(s);

for i:=1 to a[0] do

val(s[a[0]-i+1],a,ok);

readln(s);

b[0]:=length(s);

b[0]:=length(s);

for i:=1 to b[0] do

val(s[b[0]-i+1],b,ok);

end;

procedure highmul;

var i,j,k:integer;

begin

c[0]:=a[0]+b[0];

for i:=1 to b[0] do

for j:=1 to a[0]+1 do

begin

inc(c[i+j-1],a[j]*b mod 10);

c[i+j]:=c[i+j]+(a[j]*b div 10)+(c[i+j-1] div 10);

c[i+j-1]:=c[i+j-1] mod 10;

end;

end;

procedure print;

var i:integer;

begin

while c[c[0]]=0 do dec(c[0]);

for i:=c[0] downto 1 do

write(c);

writeln;

end;

begin

init;

highmul;

print;

end.

高精度除法

高精度除法:

1).高精度除以整型数据(integer);

程序如下:

program HighPrecision3_Multiply1;

const

fn_inp='hp5.inp';

fn_out='hp5.out';

maxlen=100; { max length of the number }

type

hp=record

len:integer; { length of the number }

s:array[1..maxlen] of integer

{ s[1] is the lowest position

s[len] is the highest position }

end;

var

x,y:hp;

z,w:integer;

procedure PrintHP(const p:hp);

var i:integer;

begin

for i:=p.len downto 1 do write(p.s[i]);

end;

procedure init;

var

st:string;

i:integer;

begin

assign(input,fn_inp);

reset(input);

readln(st);

x.len:=length(st);

for i:=1 to x.len do { change string to HP }

x.s:=ord(st[x.len+1-i])-ord('0');

readln(z);

close(input);

end;

procedure Divide(a:hp;b:integer;var c:hp;var d:integer);

{ c:=a div b ; d:=a mod b }

var i,len:integer;

begin

fillchar(c,sizeof(c),0);

len:=a.len;

d:=0;

for i:=len downto 1 do { from high to low }

begin

d:=d*10+a.s[i];

c.s:=d div b;

d:=d mod b;

end;

while(len>1) and (c.s[len]=0) do dec(len);

c.len:=len;

end;

procedure main;

begin

Divide(x,z,y,w);

end;

procedure out_;

begin

assign(output,fn_out);

rewrite(output);

PrintHP(y);

writeln;

writeln(w);

close(output);

end;

begin

init;

main;

out_;

end.

2).高精度除以高精度

程序如下:

program HighPrecision4_Multiply2;

const

fn_inp='hp6.inp';

fn_out='hp6.out';

maxlen=100; { max length of the number }

type

hp=record

len:integer; { length of the number }

s:array[1..maxlen] of integer

{ s[1] is the lowest position

s[len] is the highest position }

end;

var

x:array[1..2] of hp;

y,w:hp; { x:input ; y:output }

procedure PrintHP(const p:hp);

var i:integer;

begin

for i:=p.len downto 1 do write(p.s);

end;

procedure init;

var

st:string;

j,i:integer;

begin

assign(input,fn_inp);

reset(input);

for j:=1 to 2 do

begin

readln(st);

x[j].len:=length(st);

for i:=1 to x[j].len do { change string to HP }

x[j].s:=ord(st[x[j].len+1-i])-ord('0');

end;

close(input);

end;

procedure Subtract(a,b:hp;var c:hp); { c:=a-b, suppose a>=b }

var i,len:integer;

begin

fillchar(c,sizeof(c),0);

if a.len>b.len then len:=a.len { get the bigger length of a,b }

else len:=b.len;

for i:=1 to len do { subtract from low to high }

begin

inc(c.s,a.s-b.s);

if c.s<0 then

begin

inc(c.s,10);

dec(c.s[i+1]); { add 1 to a higher position }

end;

end;

while(len>1) and (c.s[len]=0) do dec(len);

c.len:=len;

end;

function Compare(const a,b:hp):integer;

{

1 if a>b

0 if a=b

-1 if a < b

}

var len:integer;

begin

if a.len>b.len then len:=a.len { get the bigger length of a,b }

else len:=b.len;

while(len>0) and (a.s[len]=b.s[len]) do dec(len);

{ find a position which have a different digit }

if len=0 then compare:=0 { no difference }

else compare:=a.s[len]-b.s[len];

end;

procedure Multiply10(var a:hp); { a:=a*10 }

var i:Integer;

begin

for i:=a.len downto 1 do

a.s[i+1]:=a.s;

a.s[1]:=0;

inc(a.len);

while(a.len>1) and (a.s[a.len]=0) do dec(a.len);

end;

procedure Divide(a,b:hp;var c,d:hp); { c:=a div b ; d:=a mod b }

var i,j,len:integer;

begin

fillchar(c,sizeof(c),0);

len:=a.len;

fillchar(d,sizeof(d),0);

d.len:=1;

for i:=len downto 1 do

begin

Multiply10(d);

d.s[1]:=a.s; { d:=d*10+a.s}

{ c.s:=d div b ; d:=d mod b; }

{ while(d>=b) do begin d:=d-b;inc(c.s) end }

while(compare(d,b)>=0) do

begin

Subtract(d,b,d);

inc(c.s);

end;

end;

while(len>1)and(c.s[len]=0) do dec(len);

c.len:=len;

end;

procedure main;

begin

Divide(x[1],x[2],y,w);

end;

procedure out;

begin

assign(output,fn_out);

rewrite(output);

PrintHP(y);

writeln;

PrintHP(w);

writeln;

close(output);

end;

begin

init;

main;

out;

end.

高精度阶乘

作为一种高精度乘法的扩展算法,实质为高精度乘低精度,算法如下: var

a:array[1..10000] of longint;

i,j,k,l,p,o,q,x,y,w:integer;

begin

read(i);

a[1]:=1;

w:=1;

for j:=1 to i do

begin

y:=0; //到“For”前可省,但改为for k:=1 to 10000 do

x:=j;

while x>0 do

begin

y:=y+1;

x:=x div 10;

end;

o:=0;

for k:=w to l+y+1 do

begin

q:=a[k]*j+o;

o:=q div 10;

a[k]:=q mod 10;

end;

l:=10000;

while (a[l]=0) and (l>1) do l:=l-1;

w:=1;

while (a[w]=0) and (w<9999) do w:=w+1;

end;

for p:=l downto 1 do

write(a[p]);

writeln;

end.

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/15 11:03:55