请输入您要查询的百科知识:

 

词条 Goldfeld-Quandt检验
释义

Goldfeld-Quandt 检验由Goldfeld和Quandt 1965年提出。这种检验的思想是以引起异方差的解释变量的大小为顺序,去掉中间若干个值,从而把整个样本分为两个子样本。用两个子样本分别进行回归,并计算残差平方和。用两个残差平方和构造检验异方差的统计量残差平方和曲线拟合。

curve fitting

用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(xi,yi)(i=1,2,…m),其中各xi是彼此不同的 。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。f(x,c)常称作拟合模型 ,式中c=(c1,c2,…cn)是一些待定参数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c使得拟合模型与实际观测值在各点的残差(或离差)ek=yk-f(xk,c)的加权平方和达到最小,此时所求曲线称作在加权最小二乘意义下对数据的拟合曲线。有许多求解拟合曲线的成功方法,对于线性模型一般通过建立和求解方程组来确定参数,从而求得拟合曲线。至于非线性模型,则要借助求解非线性方程组或用最优化方法求得所需参数才能得到拟合曲线,有时称之为非线性最小二乘拟合。

曲线拟合

贝塞尔曲线与路径转化时的误差。值越大,误差越大;值越小,越精确。

格兰杰检验计算的步骤

因此,Granger(1980)提出了因果关系的定义,他的定义是建立在完整信息集以及发生时间先后顺序基础上的。至于判断准则,也在逐步发展变化:

最初是根据分布函数(条件分布)判断,注意Ωn是到n期为止宇宙中的所有信息,Yn为到n期为止所有的Yt (t=1…n),Xn+1为第n+1期X的取值,Ωn-Yn为除Y之外的所有信息。

F(Xn+1 | Ωn) ≠ F(Xn+1 | (Ωn − Yn)) - - - - - - - (1)

后来认为宇宙信息集是不可能找到的,于是退而求其次,找一个可获取的信息集J来替代Ω:

F(Xn+1 | Jn) ≠ F(Xn+1 | (Jn − Yn)) - - - - - - - (2)

再后来,大家又认为验证分布函数是否相等实在是太复杂,于是再次退而求其次,只是验证期望是否相等(这种叫做均值因果性,上面用分布函数验证的因果关系叫全面因果性):

E(Xn+1 | Jn) ≠ E(Xn+1 | (Jn − Yn)) - - - - - - - (3)

也有一种方法是验证Y的出现是否能减小对Xn+1的预测误差,即:

σ2(Xn+1 | Jn) < σ2(Xn+1 | (Jn − Yn)) - - - - - - - (4)

最后一种方法已经接近我们最常用的格兰杰因果检验方法,统计上通常用残差平方和来表示预测误差,于是常常用X和Y建立回归方程,通过假设检验的方法(F检验)检验Y的系数是否为零。

可以看出,我们所使用的Granger因果检验与其最初的定义已经偏离甚远,削减了很多条件(并且由回归分析方法和F检验的使用我们可以知道还增强了若干条件),这很可能会导致虚假的因果关系。因此,在使用这种方法时,务必检查前提条件,使其尽量能够满足。此外,统计方法并非万能的,评判一个对象,往往需要多种角度的观察。正所谓“兼听则明,偏听则暗”。诚然真相永远只有一个,但是也要靠科学的探索方法。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/23 9:58:01