词条 | 冯大政 |
释义 | 个人简历冯大政,男,1959年12月生,工学博士,西安电子科技大学教授,硕士生导师,博士导师。中国电子学会高级会员,美国IEEE学会会员。他长期从事信号与信息处理研究, 发表期刊学术论文九十多篇,其中国际期刊论文三十多篇,IEEE会刊论文十多篇。他获得过教育部跨世纪人才基金, 获得省部级科技进步二等奖三项。 在信号处理领域,他已经有一定国际知名度。近年来,在自适应信号处理,盲信号处理,机载雷达信号处理,MIMO雷达信号处理和InSAR等研究达到国际先进水平。 研究领域1、自适应信号处理; 2、雷达成像与后处理技术; 3、阵列信号处理; 4、智能信息处理(现主要从事从结构和功能上仿大脑信息处理); 5、新体制雷达信号处理; 科研项目主要科研项目: 1、主持项国家自然科学基金1项; 2、主持国防预研基金2项; 3、主持横向课题1项; 4、参加重要项目3项。 教学情况《现代信号处理》(硕士生和博士生课程); 《盲信号处理》》(硕士生课程)。 研究成果他发表的有代性表论文(与SCI检索有关的论文)如下: [1] Da-Zheng Feng et al., “Fast approximate inverse-power iteration algorithm for adaptive FIR filtering,” IEEE Trans. Signal Processing, No. 10, pp. 4032-4039, 2006. [2] Nan Wu, and Da-Zheng Feng, “A locally adaptive filter of interferometric phase images,” IEEE Geoscience and Remote Sensing Letters, Vol. 3, No. 1, pp. 73-77, 2006. [3] Yi Zhou, and Da-Zheng Feng, “A novel algorithm for two-dimensional frequency estimation,” Signal Processing, In Press, Corrected Proof, Available online (http://www.sciencedirect.com/science?), June 2006. [4] Da-Zheng Feng, and Wei-Xing Zheng, “Fast RLS-type algorithm for unbiased equation-error adaptive IIR filtering based on approximate inverse-power iteration,” IEEE Trans. Signal Processing, No. 11, 2005. [5] Da-Zheng Feng, Wei-Xing Zheng, and Ying Jia, “Neural network learning algorithms for tracking minor subspace in high dimensional data stream,” IEEE Trans. Neural Networks, No.3, 2005. [6] Dong-Xia Chang, and Da-Zheng Feng et al., “A Fast recursive total least squares algorithm for adaptive IIR filtering,” IEEE Trans. Signal Processing, No. 3, 2005. [7] Da-Zheng Feng, Xian-Da Zhang, and Zheng Bao, “A neural network learning for adaptively extracting cross-correlation features between two high dimensional data streams,” IEEE Trans. Neural Networks, Vol. 15, No. 6, pp. 1541-1554, Nov. 2004. [8] Da-Zheng Feng et al., “A Fast recursive total least squares algorithm for adaptive FIR filtering,” IEEE Trans. Signal Processing, Vol. 52, No.10, pp. 2729-2737, Oct. 2004. [9] Lei Huang, Shun-Jun Wu, Da-Zheng Feng, and Lin-Rang Zhang, “Low complexity method for signal subspace fitting,” Electronics Letters, Vol. 40, No. 14, pp. 847-848, July 2004. [10] Da-Zheng Feng et al. “Neural network learning for principal component analysis: A multistage decomposition approach,” Chinese Journal of Electronics No. 1, Jan. 2004. [11] Da-Zheng Feng, et al. “An efficient multistage decomposition approach for independent components,” Signal Processing, Vol. 83, pp. 181-197, Jan. 2003. [12] Da-Zheng Feng, et al. “Multistage decomposition algorithm for blind source separation,” Progress in Natural Science, No. 5, May 2002. [13] Da-Zheng Feng, et al. “A bi-iteration instrumental variable noise-subspace tracking algorithm,” Signal Processing, Vol. 81, pp. 2215-2221, 2001. [14] Da-Zheng Feng, et al. “A cross-associative neural network for SVD of non-squared data matrix in signal processing,” IEEE Trans. Neural Networks, No. 5, pp. 1215-1221, Sept. 2001. [15] Da-Zheng Feng, et al. “An extended recursive least-squares algorithm,” Signal Processing, Vol. 81, pp. 1075-1081, 2001. [16] Da-Zheng Feng, et al. “A Cross-Associative Neural Network Used as SVD of Non-Square Data Matrix or Cross-correlation matrix in signal Processing,” Chinese Journal of Electronics No. 1, Jan. 2001. [17] Da-Zheng Feng, et al., “Two-dimensional phase unwrapping based on the finite element method and FFT’s,” Chinese Journal of Electronics, No. 3, July 2000. [18] Da-Zheng Feng, et al. “Modified RLS algorithm for unbiased estimation of FIR system with input and output noise,” IEE Electronics Letters, No. 3, pp. 273-274, Feb. 2000. [19] Da-Zheng Feng, et al., “Total least mean squares algorithm,” IEEE Trans. Signal Processing, No. 8, pp. 2122-2130, Aug. 1998. [20] Da-Zheng Feng, et al., “Cross-correlation neural network models for the smallest singular component of general matrix,” Signal Processing, Vol. 64, pp. 333-346, Feb. 1998. [21] Da-Zheng Feng et al., “Modified Cross-Correlation neural networks,” Chinese Journal of Electronics, No. 2, May 1997. |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。