词条 | 二元函数 |
释义 | 定义设平面点集D包含于R^2,若按照某对应法则f,D中每一点P(x,y)都有唯一的实数z与之对应,则称f为在D上的二元函数. 且称D为f的定义域,P对应的z为f在点P的函数值,记作z=f(x,y);全体函数值的集合称为f的值域. 一般来说,二元函数是空间的曲面,如双曲抛物面(马鞍形)z=xy. 连续性f为定义在点集D上的二元函数.P0为D中的一点.对于任意给定的正数ε,总存在相应的正数δ,只要P在P0的δ临域和D的交集内,就有|f(P0)-f(P)|<ε,则称f关于集合D在点P0出连续. 若f在D上任何点都连续,则称f是D上的连续函数. 一致连续性与联系性的定义相似 对于任意给定的ε>0,存在某一个正数δ,对于D上任意一点P0,只要P在P0的δ邻域与D的交集内,就有|f(P0)-f(P)|<ε,则称f关于集合D一致连续. 一致连续比连续的条件要苛刻很多. 可微性定义设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为: z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=((△x)^2+(△y)^2)^0.5.o(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零.则称f在P0点可微. 可微性的几何意义可微的充要条件是曲面z=f(x,y)在点P(x0,y0,f(x0,y0))存在不平行于z轴的切平面Π的充要条件是函数f在点P0(x0,y0)可微. 这个切面的方程应为Z-z0=A(X-x0)+B(Y-y0) A,B的意义如定义所示 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。