词条 | 二次规划 |
释义 | 简介二次规划是非线性规划中的一类特殊数学规划问题,在很多方面都有应用,如投资组合、约束最小二乘问题的求解、序列二次规划在非线性优化问题中应用等。在过去的几十年里,二次规划已经成为运筹学、经济数学、管理科学、系统分析和组合优化科学的基本方法。 一般形式二次规划的一般形式可以表示为,如右图式子(1.1): 其中G是Hessian矩阵,τ是有限指标集,c,x和{ai},都是R中的向量。如果Hessian矩阵是半正定的,则我们说(1.1)是一个凸二次规划,在这种情况下该问题的困难程度类似于线性规划(如果=0,二次规划问题就变成线性规划问题了)。如果有至少一个向量满足约束并且在可行域有下界,则凸二次规划问题就有一个全局最小值。如果是正定的,则这类二次规划为严格的凸二次规划,那么全局最小值就是唯一的。如果是一个不定矩阵,则为非凸二次规划,这类二次规划更有挑战性,因为它们有多个平稳点和局部极小值点。 解法到目前为止,已经出现了很多求解二次规划问题的算法,如Lemke方法、内点法、有效集法、椭球算法等等,并且现在仍有很多学者在从事这方面的研究工作。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。