词条 | d-s证据理论 |
释义 | 证据理论是由Dempster于1967年首先提出,由他的学生shafer于1976年进一步发展起来的一种不精确推理理论,也称为Dempster/Shafer 证据理论(D-S证据理论),属于人工智能范畴,最早应用于专家系统中,具有处理不确定信息的能力。作为一种不确定推理方法,证据理论的主要特点是:满足比贝叶斯概率论更弱的条件;具有直接表达“不确定”和“不知道”的能力.。 在此之后,很多技术将 DS 理论进行完善和发展,其中之一就是证据合成 (Evidential reasoning, ER) 算法。 ER 算法是在置信评价框架和DS 理论的基础上发展起来的。ER 算法被成功应用于:机动车评价分析、货船设计、海军系统安全分析与综合、软件系统安全性能分析、改造轮渡设计、行政车辆评估集组织评价。 在医学诊断、目标识别、军事指挥等许多应用领域,需要综合考虑来自多源的不确定信息,如多个传感器的信息、多位专家的意见等等,以完成问题的求解,而证据理论的联合规则在这方面的求解发挥了重要作用。 在DS证据理论中,由互不相容的基本命题(假定)组成的完备集合称为识别框架,表示对某一问题的所有可能答案,但其中只有一个答案是正确的。该框架的子集称为命题。分配给各命题的信任程度称为基本概率分配(BPA,也称m函数),m(A)为基本可信数,反映着对A的信度大小。信任函数Belgium(A)表示对命题A的信任程度,似然函数Pl(A)表示对命题A非假的信任程度,也即对A似乎可能成立的不确定性度量,实际上,[Bel(A),Pl(A)]表示A的不确定区间,[0,Bel(A)]表示命题A支持证据区间,[0,Pl(A)]表示命题A的拟信区间, [Pl(A),1]表示命题A的拒绝证据区间。设m1和m2是由两个独立的证据源(传感器)导出的基本概率分配函数,则Dempster联合规则可以计算这两个证据共同作用产生的反映融合信息的新的基本概率分配函数。 证据理论的最新发展和应用的方向有:基于规则的证据推理模型及其规则库的离线和在线更新决策模型,证据理论与支持向量机的结合,证据理论与粗糙集理论的结合,证据理论与模糊集理论的结合,证据理论与神经网络的结合,基于数据的 Markovian 与 Dirichlet 混合方法实现对证据理论质函数的赋值。 . |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。