词条 | 调和数列 |
释义 | 定义1:自然数的倒数组成的数列,称为调和数列. 定义2:若数列{an}满足1/a(n+1)-1/an=d(n∈N*,d为常数),则称数列{an}调和数列 人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时): 1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......称作欧拉初始,专为调和级数所用,至今不知是有理数还是无理数) 人们倾向于认为它没有一个简洁的求和公式. 但是,不是因为它是发散的,才没有求和公式.相反的,例如等差数列是发散的,公比的绝对值大于1的等比数列也是发散的,它们都有求和公式. 当n→∞时 1+1/2+1/3+1/4+ … +1/n 这个级数是发散的。简单的说,结果为∞ ------------------ 用高中知识也是可以证明的,如下: 1/2≥1/2 1/3+1/4>1/2 1/5+1/6+1/7+1/8>1/2 …… 1/[2^(k-1)+1]+1/[2^(k-1)+2]+…+1/2^k>[2^(k-1)](1/2^k)=1/2 对于任意一个正数a,把a分成有限个1/2 必然能够找到k,使得 1+1/2+1/3+1/4+ … +1/2^k>a 所以n→∞时,1+1/2+1/3+1/4+ … +1/n→∞ |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。