词条 | 第二积分中值定理 |
释义 | 第二积分中值定理: 若1)f(x)在[a,b]上非负递减, (2)g(x)在[a,b]上可积, 则存在c属于开区间(a,b)使f(x)g(x)在[a,b]积分值等于f(a+0)乘以g(x)在[a,c]上的积分值. 推论 若(1)f(x)在[a,b]单调, (2)g(x)在[a,b]可积, 则存在c属于开区间 (a,b),使 f(x)g(x)在[a,b]积分值等于f(a+0)乘以g(x)在[a,c]积分值与f(b-0)乘以g(x)在[c,b]积分值之和. |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。