词条 | 有限群的线性表示 |
释义 | 图书信息出版社: 世界图书出版公司; 第1版 (2008年10月1日) 外文书名: Linear Representations of Finite Groups 平装: 170页 正文语种: 英语 开本: 24 ISBN: 9787506292597 条形码: 9787506292597 尺寸: 22.2 x 14.6 x 1.4 cm 重量: 240 g 作者简介作者:(法国)赛尔 (Serre.J.P) 内容简介《有限群的线性表示》是一部非常经典的介绍有限群线性表示的教程,原版曾多次修订重印,作者是当今法国最突出的数学家之一,他对理论数学有全面的了解,尤以著述清晰、明了闻名。《有限群的线性表示》是他写的为数不多的教科书之一,原文是法文(1971年版),后出了德译本和英译本。《有限群的线性表示》是英译本的重印本。它篇幅不大,但深入浅出的介绍了有限群的线性表示,并给出了在量子化学等方面的应用,便于广大数学、物理、化学工作者初学时阅读和参考。 目录Part Ⅰ Representations and Characters 1 Generalities on linear representations 1.1 Definitions 1.2 Basic examples 1.3 Submpmsentations 1.4 Irreducible representations 1.5 Tensor product of two representations 1.6 Symmetric square and alternating square 2 Character theory 2.1 The character of a representation 2.2 Schur's lemma; basic applications 2.3 0rthogonality relations for characters 2.4 Decomposition of the regular representation 2.5 Number of irreducible representations 2.6 Canonical decomposition of a representation 2.7 Explicit decomposition of a representation 3 Subgroups, products, induced representations 3.1 Abelian subgroups 3.2 Product of two groups 3.3 Induced representations 4 Compact groups 4.1 Compact groups 4.2 lnvariant measure on a compact group 4.3 Linear representations of compact groups 5 Examples 5.1 The cyclic Group 5.2 The group 5.3 The dihedral group 5.4 The group 5.5 The group 5.6 The group 5.7 The alternating group 5.8 The symmetric group 5.9 The group of the cube Bibliography: Part Ⅰ Part Ⅱ Representations in Characteristic Zero 6 The group algebra 6.1 Representations and modules 6.2 Decomposition of C[G] 6.3 The center of C[G] 6.4 Basic properties of integers 6.5 lntegrality properties of characters. Applications 7 Induced representations; Mackey's criterion 7.1 Induction 7.2 The character of an induced representation; the reciprocity formula 7.3 Restriction to subgroups 7.4 Mackey's irreducibility criterion 8 Examples of induced representations 8. l Normal subgroups; applications to the degrees of the in'educible representations 8.2 Semidirect products by an ahelian group 8.3 A review of some classes of finite groups 8.4 Syiow's theorem 8.5 Linear representations of superselvable groups 9 Artin's theorem 9.1 The ring R(G) 9.2 Statement of Artin's theorem 9.3 First proof 9.4 Second proof of (i) = (ii) 10 A theorem of Brauer 10.1 p-regular elements;p-elementary subgroups 10.2 Induced characters arising from p-elementary subgroups 10.3 Construction of characters 10.4 Proof of theorems 18 and 18' 10.5 Brauer's theorem 11 Applications of Brauer's theorem 11.1 Characterization of characters 11.2 A theorem of Frobenius 11.3 A converse to Brauer's theorem 11.4 The spectrum of A R(G) 12 Rationality questions 12.1 The rings RK(G) and RK(G) 12.2 Schur indices 12.3 Realizability over cyclotomic fields 12.4 The rank of RK(G) 12.5 Generalization of Artin's theorem 12.6 Generalization of Brauer's theorem 12.7 Proof of theorem 28 13 Rationality questions: examples 13. I The field Q 13.2 The field R Bibliography: Part Ⅱ Part Ⅲ Introduction to Brauer Theory 14 The groups RK(G), R(G), and Pk(G) 14.1 The rings RK(G) and R,(G) 14.2 The groups Pk(G) and P^(G) 14.3 Structure of Pk(G) 14.4 Structure of PA(G) 14.5 Dualities 14.6 Scalar extensions 15 The cde triangle 15.1 Definition of c: Pk(G) ——Rk(G) 15.2 Definition of d: Rs(G) —— Rk(G) 15.3 Definition of e: Pk(G) —— RK(G) 15.4 Basic properties of the cde triangle 15.5 Example: p'-gmups 15.6 Example: p-groups 15.7 Example: products ofp'-groups and p-groups 16 Theorems 16.1 Properties of the cde triangle 16.2 Characterization of the image of e 16.3 Characterization of projective A [G ]-modules by their characters 16.4 Examples of projective A [G ]-modules: irreducible representations of defect zero 17 Proofs 17. I Change of groups 17.2 Brauer's theorem in the modular case 17.3 Proof of theorem 33 17.4 Proof of theorem 35 17.5 Proof of theorem 37 17.6 Proof of theorem 38 18 Modular characters 18.1 The modular character of a representation 18.2 Independence of modular characters 18.3 Reformulations 18.4 A section ford 18.5 Example: Modular characters of the symmetric group 18.6 Example: Modular characters of the alternating group 19 Application to Artin representations 19.1 Artin and Swan representations 19.2 Rationality of the Artin and Swan representations 19.3 An invariant Appendix Bibliography: Part Ⅲ Index of notation Index of terminology |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。