请输入您要查询的百科知识:

 

词条 大O表示法
释义

大O表示法:称一个函数g(n)是O(f(n)),当且仅当存在常数c>0和n0>=1,对一切n>n0均有|g(n)|<=c|f(n)|成立,也称函数g(n)以f(n)为界或者称g(n)囿于f(n)。记作g(n)=O(f(n))。 定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数。T(n)称为这一算法的“时间复杂度”。当输入量n逐渐加大时,时间复杂度的极限情形称为算法的“渐近时间复杂度”。

简介

渐进分析法最常用的表示方法是用于描述函数渐近行为的数学符号,更确切地说,它是用另一个(通常更简单的)函数来描述一个函数数量级的渐近上界。大O符号是由德国数论学家保罗·巴赫曼(Paul Bachmann)在其1892年的著作《解析数论》(Analytische Zahlentheorie)首先引入的。

我们常用大O表示法表示时间复杂度,注意它是某一个算法的时间复杂度。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。此外,一个问题本身也有它的复杂度,如果某个算法的复杂度到达了这个问题复杂度的下界,那就称这样的算法是最佳算法。

通常我们需要一种方法来对不同的算法来进行比较,一般来说,解决同样的问题有多种算法,那么在不同的客观条件下如何对不同的算法进行取舍呢?

算法的目标

容易理解

编码和调试

优秀的算法通常是简洁而清晰的,这样带来的直接好处就是易于编码和理解,同时这样算法也必定是健壮的,如果一个算法晦涩难懂,则很可能其中会隐藏较多的错误。

最小的代价

算法的代价的最小化是指其执行时间最短且占用的存储空间最少,它们之间 往往是相互矛盾的,然而一般而言,算法的执行时间是主要的评价标准。

算法的执行时间

算法的执行时间等于它所有基本操作执行时间之和, 而一条基本操作的执行时间等于它执行的次数和每一次执行的时间的积,

如下:

算法的执行时间 = 操作1 + 操作2 + ... + 操作n

操作的执行时间 = 操作执行次数 X 执行一次的时间

然而存在一个问题,不同的编程语言,不同的编译器,或不同的CPU等因素将导致执行一次操作的时间各不相同,这样的结果会使算法的比较产生歧义, 于是我们假定所有计算机执行相同的一次基本操作所需时间相同,而把算法中基本操作所执行的最大次数作为量度。就是说我们把算法的执行时间简单地用基本操作的执行次数来代替了。

那么除此之外,基本操作是什么? 它可以是基本运算,赋值,比较,交换等,如在排序中,基本操作指的是元素的比较及交换。而在线性查找中,它是数据的比较。

时间复杂度和大O表示法

当问题规模即要处理的数据增长时, 基本操作要重复执行的次数必定也会增长, 那么我们关心地是这个执行次数以什么样的数量级增长。所谓数量级可以理解为增长率。这个所谓的数量级就称为算法的渐近时间复杂度(asymptotic time complexity), 简称为时间复杂度。如何分析这个数量级呢? 由于基本操作的执行次数是问题规模n 的一个函数T(n), 所以问题就是我们要确定这个函数T(n)是什么, 然后分析它的数量级, 拥有相同数量级的函数 f(n) 的集合表示为 O(f(n)), O是数量级的标记。如果T(n)的数量级和f(n)相同,

显然T(n) ∈ Of(n)。这个函数的值表示当我要处理的数据量增长时,基本操作执行次数以什么样的比例增长。即n增长时,T(n)增长多少?

例子

首先看一个简单的示例:

(1) int num1, num2;

(2) for(int i=0; i<n; i++){

(3) num1 += 1;

(4) for(int j=1; j<=n; j*=2){

(5) num2 += num1;

(6) }

(7) }

分析:

1.

语句int num1, num2;的频度为1;

语句i=0;的频度为1;

语句i<n; i++; num1+=1; j=1; 的频度为n;

语句j<=n; j*=2; num2+=num1;的频度为n*log2n;

T(n) = 2 + 4n + 3n*log2n

2.

忽略掉T(n)中的常量、低次幂和最高次幂的系数

f(n) = n*log2n

3.

lim(T(n)/f(n)) = (2+4n+3n*log2n) / (n*log2n)

= 2*(1/n)*(1/log2n) + 4*(1/log2n) + 3

当n趋向于无穷大,1/n趋向于0,1/log2n趋向于0

所以极限等于3。

T(n) = O(n*log2n)

简化的计算步骤

再来分析一下,可以看出,决定算法复杂度的是执行次数最多的语句,这里是num2 += num1,一般也是最内循环的语句。

并且,通常将求解极限是否为常量也省略掉?

于是,以上步骤可以简化为:

1. 找到执行次数最多的语句

2. 计算语句执行次数的数量级

3. 用大O来表示结果

继续以上述算法为例,进行分析:

1.

执行次数最多的语句为num2 += num1

2.

T(n) = n*log2n

f(n) = n*log2n

3.

// lim(T(n)/f(n)) = 1

T(n) = O(n*log2n)

--------------------------------------------------------------------------------

一些补充说明

最坏时间复杂度

算法的时间复杂度不仅与语句频度有关,还与问题规模及输入实例中各元素的取值有关。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。这就保证了算法的运行时间不会比任何更长。

求数量级

即求对数值(log),默认底数为10,简单来说就是“一个数用标准科学计数法表示后,10的指数”。例如,5000=5x10 3 (log5000=3) ,数量级为3。另外,一个未知数的数量级为其最接近的数量级,即最大可能的数量级。

求极限的技巧

要利用好1/n。当n趋于无穷大时,1/n趋向于0

--------------------------------------------------------------------------------

一些规则(引自:时间复杂度计算)

1) 加法规则

T(n,m) = T1(n) + T2(n) = O (max ( f(n), g(m) )

2) 乘法规则

T(n,m) = T1(n) * T2(m) = O (f(n) * g(m))

3) 一个特例(问题规模为常量的时间复杂度)

在大O表示法里面有一个特例,如果T1(n) = O(c), c是一个与n无关的任意常数,T2(n) = O ( f(n) ) 则有

T(n) = T1(n) * T2(n) = O ( c*f(n) ) = O( f(n) )

也就是说,在大O表示法中,任何非0正常数都属于同一数量级,记为O(1)。

4) 一个经验规则

复杂度与时间效率的关系:

c < log2n < n < n*log2n < n2 < n3 < 2n < 3n < n! (c是一个常量)

|--------------------------|--------------------------|-------------|

较好 一般 较差

其中c是一个常量,如果一个算法的复杂度为c 、 log2n 、n 、 n*log2n,那么这个算法时间效率比较高 ,如果是 2n , 3n ,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。

--------------------------------------------------------------------------------------------------

复杂情况的分析

以上都是对于单个嵌套循环的情况进行分析,但实际上还可能有其他的情况,下面将例举说明。

1.并列循环的复杂度分析

将各个嵌套循环的时间复杂度相加。

例如:

for (i=1; i<=n; i++)

x++;

for (i=1; i<=n; i++)

for (j=1; j<=n; j++)

x++;

解:

第一个for循环

T(n) = n

f(n) = n

时间复杂度为Ο(n)

第二个for循环

T(n) = n2

f(n) = n2

时间复杂度为Ο(n2)

整个算法的时间复杂度为Ο(n+n2) = Ο(n2)。

2.函数调用的复杂度分析

例如:

public void printsum(int count){

int sum = 1;

for(int i= 0; i<n; i++){

sum += i;

}

System.out.print(sum);

}

分析:

记住,只有可运行的语句才会增加时间复杂度,因此,上面方法里的内容除了循环之外,其余的可运行语句的复杂度都是O(1)。

所以printsum的时间复杂度 = for的O(n)+O(1) = 忽略常量 = O(n)

*这里其实可以运用公式 num = n*(n+1)/2,对算法进行优化,改为:

public void printsum(int count){

int sum = 1;

sum = count * (count+1)/2;

System.out.print(sum);

}

这样算法的时间复杂度将由原来的O(n)降为O(1),大大地提高了算法的性能。

3.混合情况(多个方法调用与循环)的复杂度分析

例如:

public void suixiangMethod(int n){

printsum(n);//1.1

for(int i= 0; i<n; i++){

printsum(n); //1.2

}

for(int i= 0; i<n; i++){

for(int k=0; k

System.out.print(i,k); //1.3

}

}

suixiangMethod 方法的时间复杂度需要计算方法体的各个成员的复杂度。

也就是1.1+1.2+1.3 = O(1)+O(n)+O(n2) ----> 忽略常数 和 非主要项 == O(n2)

--------------------------------------------------------------------------------------------------

更多的例子

O(1)

交换i和j的内容

temp=i;

i=j;

j=temp;

以上三条单个语句的频度为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

O(n2)

sum=0; /* 执行次数1 */

for(i=1;i<=n;i++)

for(j=1;j<=n;j++)

sum++; /* 执行次数n2 */

解:T(n) = 1 + n2 = O(n2)

for (i=1;i<n;i++)

{

y=y+1; ①

for (j=0;j<=(2*n);j++)

x++; ②

}

解: 语句1的频度是n-1

语句2的频度是(n-1)*(2n+1) = 2n2-n-1

T(n) = 2n2-n-1+(n-1) = 2n2-2

f(n) = n2

lim(T(n)/f(n)) = 2 + 2*(1/n2) = 2

T(n) = O(n2).

O(n)

a=0;

b=1; ①

for (i=1;i<=n;i++) ②

{

s=a+b; ③

b=a; ④

a=s; ⑤

}

解: 语句1的频度:2,

语句2的频度:n,

语句3的频度:n,

语句4的频度:n,

语句5的频度:n,

T(n) = 2+4n

f(n) = n

lim(T(n)/f(n)) = 2*(1/n) + 4 = 4

T(n) = O(n).

O(log2n)

i=1; ①

while (i<=n)

i=i*2; ②

解: 语句1的频度是1,

设语句2的频度是t, 则:nt<=n; t<=log2n

考虑最坏情况,取最大值t=log2n,

T(n) = 1 + log2n

f(n) = log2n

lim(T(n)/f(n)) = 1/log2n + 1 = 1

T(n) = O(log2n)

O(n3)

for(i=0;i<n;i++)

{

for(j=0;j<i;j++)

{

for(k=0;k<j;k++)

x=x+2;

}

}

解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/2次

T(n) = n(n+1)(n-1)/2 = (n3-n)/2

f(n) = n3

所以时间复杂度为O(n3)。

拓展

定义一:Θ(g(n))={f(n) | 如果存在正常数c1、c2和正整数n0,使得当n>=n0时,0<c1g(n)<=f(n)<=c2g(n)恒成立}

定义二:Ο(g(n))={f(n) | 如果存在正常数c和正整数n0,使得当n>=n0时,0<=f(n)<=cg(n)恒成立}

定义三:Ω(g(n))={f(n) | 如果存在正常数c和正整数n0,使得当n>=n0时,0<=cg(n)<=f(n)恒成立}

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/31 16:00:15