词条 | 相互独立 |
释义 | 设A,B是试验E的两个事件,若P(A)>0,可以定义P(B∣A).一般,A的发生对B发生的概率是有影响的,所以条件概率P(B∣A)≠P(B),而只有当A的发生对B的发生没有有影响的时候才有条件概率P(B∣A)=P(B).这时,由乘法定理P(A∩B)=P(B∣A)P(A)=P(A)P(B). 因此 定义:设A,B是两事件,如果满足等式P(A∩B)=P(A)P(B),则称事件A,B相互独立,简称A,B独立. 注:1.P(A∩B)就是P(AB) 2.若P(A)>0,P(B)>0则A,B相互独立与A,B互不相容不能同时成立,即独立必相容,互斥必联系. 容易推广:设A,B,C是三个事件,如果满足P(AB)=P(A)P(B),P(BC)=P(B)P(C),P(AC)=P(A)P(C),P(ABC)=P(A)P(B)P(C),则称事件A,B,C相互独立 更一般的定义是,A1,A2,……,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…任意n个事件的积事件的概率,都等于各个事件概率之积,则称事件A1,A2,……,An相互独立 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。