请输入您要查询的百科知识:

 

词条 相对论量子化学
释义

相对论量子化学是指同时使用量子化学和相对论力学方法来解释元素的性质与结构,特别是对于元素周期表中的重元素。

早期量子力学的发展并不考虑相对论的影响,因此人们通常认为“相对论效应”是指由于计算没有考虑相对论而与真实值产生差异或甚至矛盾。本文中的重元素系指元素周期表中原子序数较大的元素。由于质量较大的缘故,相对论对它们的影响是不可忽略的。典型的重元素包括镧系元素和锕系元素等。

在化学中,相对论效应可以视为非相对论理论的微扰或微小修正,这可以从薛定谔方程推导获得。这些修正对原子中不同原子轨道上的电子具有不同的影响,这取决于这些电子的速度与光速的相对差别。相对论效应在重元素更加显著,这是由于只有这些元素中的电子速度能与光速相比拟。

历史

1935年开始,伯莎·斯威尔斯(Bertha Swirles)提出了多电子体系的相对性处理方法,尽管保罗·狄拉克于1929年在文章中如此提到:

“ ...考虑到相对论的概念,量子力学仍存在不完备性。然而这些不完备只有在处理高速粒子时才会引发问题,因此在研究原子分子结构和一般化学反应时这些问题并不重要。 在忽略了质量与速度的相对论性变化的情况下并且认定电子与原子核间只存在库仑作用力,这些计算结果也通常足够精确。  ”

原先理论化学家基本上同意狄拉克的看法,然而1970年代人们开始认识到重元素的相对论效应。1926年,在那篇著名的文献中,奥地利著名量子物理学家薛定谔提出了不考虑相对论的薛定谔方程。科学家对薛定谔方程作了相对论性的修正(参见克莱因-高登方程),以解释原子光谱的精细结构,然而这类修正并没有很快融入化学研究中,因为原子谱线主要属于物理学而不是化学。多数化学家对相对论量子力学并不熟悉,而且当时化学研究的重点是有机化学(主要是典型的轻元素)。

狄拉克的观点(相对论量子力学在化学中所扮演的角色)是错误的,有两个原因:首先是s轨道和p轨道中的电子速度可与光速相比拟,其次是相对论效应对d轨道和f轨道的间接影响十分显著。

元素周期律的偏差

元素周期表是科学家们以当时已发现的元素的周期性规律为基础建立的。实际上,以此建立的化学模型给它带来了生命力。然而,第6周期元素(Cs-Rn)与第5周期元素(Rb-Xe)与上一周期元素的物理性质和化学性质有许多差别,显示出明显的相对论效应。金以及电子排布类似的铂和汞的相对论效应特别显著。由于电子排布接近4f和5d全充满电子,这三种元素是除超铀元素以外相对论效应最大的元素。

电子排布

族数 第5周期元素 价电子排布 族数 第6周期元素 价电子排布

5 Nb 4d5s 5 Ta 5d6s

6 Mo 4d5s 6 W 5d6s

7 Tc 4d5s 7 Re 5d6s

8 Ru 4d5s 8 Os 5d6s

9 Rh 4d5s 9 Ir 5d6s

10 Pd 4d5s 10 Pt 5d6s

对比第5周期元素和第6周期元素的电子排布,可以发现由于第6周期元素相对论效应明显,价层电子排布由第5周期的4d5s或4d5s变为第6周期的5d6s或5d6s。

第6周期元素基态原子倾向于先填充6s轨道,因为6s轨道因相对论效应而收缩,能级下降。铂更是不顾5d轨道全满的稳定性而选择5d6s填充方式。锝是唯一的例外,因为相对论效应不太明显,而且4d是半满的稳定状态。

金属的熔点?

受相对论效应影响,第6周期过渡金属元素熔点变化更大。其中钨是熔点最高的金属,而汞是熔点最低的金属。因为6s轨道收缩,能量下降,使得本周期元素有6个价轨道,这些轨道中的电子都能参与形成金属键。由于这些价轨道和配位环境的对称性很高,每个轨道都能有效成键,不会形成非键轨道。平均每个原子形成3个成键轨道和3个反键轨道。

从铯到钨,电子全部填入成键轨道组合成的能带,能量降低,金属键增强,熔点升高。而从钨到汞,电子填入反键轨道,能量升高,金属键减弱,熔点下降。汞的成键轨道和反键轨道全部填满,金属键很弱,因此在常温下就呈液态。

汞(Hg)在常温下(凝固点-39 °C)是一种液体,也是惟一一种常温下呈液态的金属。汞的金属键与附近的元素(镉的熔点为321 °C,金更高达1064 °C)相比特别弱。镧系收缩效应可以部分解释该问题,但它不能完整地说明这种反常现象。在气相中的汞也与其他金属不同,它大部分以单原子形式Hg(g)存在,Hg2(g)也存在,因为键长的相对缩短使它变得稳定。

Hg2(g)不存在,因为6s轨道由于相对论效应而收缩。因此它对任何化学键的形成只有微弱作用。实际上Hg-Hg键的主要成分是范德华力,这也解释了Hg-Hg键如此之弱的原因,这导致了它在室温呈液态。

Au2(g)和Hg(g)是类似的,至少与H2(g)和He(g)具有类似的外层电子。因为相对论效应引起的轨道收缩,具有6s结构的气态汞可被称作伪惰性气体。

金?

金能形成Au2分子和Au离子。同族的银在液氨中也能形成Ag,但不稳定。虽然碱金属也能形成类似的物质,但碱金属负离子只有在大环配体穴醚中才能稳定存在。CsAu可以溶解在液氨中,缓慢除去溶剂得到非常活泼的蓝色固体CsAu·NH3。金负离子的存在已经被包括穆斯堡尔谱学在内的多种方式证明。

金负离子被认为是一种拟卤素离子:

金在碱作用发生歧化反应: 金能与氢原子形成共价键: X射线晶体学表明[Rb(18-冠-6)(NH3)3][Au·NH3]中,Au-H键的长度为258pm,处于H-Br和H-I键之间。 金有+5氧化态,这是同族元素没有的。最近甚至合成一种化学式为AuF7的化合物,光谱学研究表明它是一种双氟配合物。 如果能证实,这将是第一个氟分子作路易斯碱的例子。

此外金还能与形成特殊的AuXe4,两种惰性的元素之间形成了化学键。研究表明,可以检测到氙的电子云向金部分偏移。

金能形成大量的原子簇化合物,例如Au55和Au2Te12,此处不再详述。

铂?

铂能形成Pt离子,该离子存在于下文介绍的Cs2Pt中。Pt2是Hg2和Au2的等电子体。BaPt中不含有这种离子,而是通过Pt-Pt键形成了链状化合物。电荷迁移研究表明,每个钡原子只向铂原子提供了一个电子,这种物质被认为是第一种含有过渡金属津特耳(Zintl)离子的化合物。固态Ba3Pt2中哑铃形的p电子云重叠形成Pt-Pt键,而Ba2Pt采用氯化镉型结构,该化合物的结构可以写成(Ba)2Pt·2e。电化学和X射线光谱学研究证明其中铂的氧化态确实为负值。

相对论效应增加了Pt(VI)化合物的稳定性,尽管它们依然是强氧化剂。六氟化铂的电子亲和能为7电子伏特,能够得电子形成PtF6和PtF6。到现在为止,还没有任何关于Pd(VI)化合物的报道,尽管理论计算表明六氟化钯是稳定的。这可能与4d电子的相对论效应较弱有关。

理论计算表明,八氟化铂是不稳定的,因为在很低的温度它还能自发地分解产生氟。在10K下,使用激光消融技术在氩和氧的混合物中处理铂原子,产生具有D3h对称性的三氧化铂。在气相中或使用基质隔离技术,铂还能结合稀有气体原子形成依靠范德华力结合的超分子Ng-Pt-Ng(Ng代表稀有气体原子)。

第7与第8周期元素?

s区元素

第7与第8周期元素都是放射性元素,许多种元素还没有获得。这使得对它们的研究十分困难,但理论计算已经证明它们受相对论效应的影响比第6周期元素更显著。事实上,只有钫、氡、鎶三种元素的相对论效应有过较多的研究。

理论计算表明,钫和镭的电负性甚至比上一周期的铯和钡大,这与元素周期律的推测恰好相反。这造成了CsFr分子中电子云偏向钫,以及钫的氧化物比铯具有更大的共价性。镭的性质也因电负性的反常变化而变化。

[编辑] 超重元素对超重元素相对论效应的研究较少。将鎶吸附在金表面,与其他放射性同位素进行比较,发现它的沸点在汞和氡之间。鎶与卤素形成的共价键比汞更弱,也说明了它的相对论效应比汞更明显。

惰性电子对效应

主条目:惰性电子对效应

第6周期p区元素,例如Tl(I)(铊)、Pb(II)(铅)和Bi(III)(铋)的配合物中有6s电子对,6s轨道收缩导致的惰性电子对效应使得这对电子更难电离,与族数相等的氧化态因此不稳定,具有强氧化性。

其它?

以下是一些常归结于相对论效应的现象:

四氟化汞的稳定性 亲金作用(也称金键) 金负离子(Au)的稳定性——存在于类似CsAu的化合物中 铅的晶体结构——它采用面心立方最密堆积,而不是金刚石型 锆和铪之间惊人的相似性 铀酰离子的稳定性以及轻锕系元素(Pa-Am)的高氧化态 钫和镭的原子半径偏小 镧系收缩效应的大约10%是相对论效应造成的

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/11 4:44:03