请输入您要查询的百科知识:

 

词条 纯粹数学
释义

一般而言,纯粹数学是一门专门研究数学本身,不以应用为目的的学问,相对于应用数学而言。纯粹数学以其严格、抽象和美丽著称。自18世纪以来,纯粹数学成为数学研究的一个特定种类,并随着探险、天文学、物理学、工程学等的发展而发展。

纯粹数学以数论为其代表。

分类

纯粹数学研究从客观世界中抽象出来的数学规律的内在联系,也可以说是研究数学本身的规律。它大体上分为三大类,即

研究空间形式的几何类,研究离散系统的代数类,研究连续现象的分析类

研究空间形式的几何类

属于第一类的如微分几何、拓扑学。微分几何是研究光滑曲线、曲面等,它以数学分析、微分几何为研究工具。在力学和一些工程问题(如弹性壳结构、齿轮等方面)中有广泛的应用。拓扑学是研究几何图形在一对一的双方连续变换下不变的性质,这种性质称为“拓扑性质”。如画在橡皮膜上的图形当橡皮膜受到变形但不破裂或折叠时,曲线的闭合性、两曲线的相交性等都是保持不变的。

研究离散系统的代数类

属于第二类的如数论、近世代数。数论是研究整数性质的一门学科。按研究方法的不同,大致可分为初等数论、代数数论、几何数论、解析数论等。近世代数是把代数学的对象由数扩大为向量、矩阵等,它研究更为一般的代数运算的规律和性质,它讨论群、环、向量空间等的性质和结构。近世代数有群论、环论、伽罗华理论等分支。它在分析数学、几何、物理学等学科中有广泛的应用。

研究连续现象的分析类

属于第三类的如微分方程、函数论、泛函分析。微分方程是含有未知函数的导数或偏导数的方程。如未知函数是一元函数,则称为常微分方程,如未知函数是多元函数,则称为偏微分方程。函数论是实函数论(研究实数范围上的实值函数)和复变函数(研究在复数平面上的函数性质)的总称。泛函分析是综合运用函数论、几何学、代数学的观点来研究无限维向量空间(如函数空间)上的函数、算子和极限理论,它研究的不是单个函数,而是具有某种共同性质的函数集合。它在数学和物理中有广泛的应用。

历史

19世纪

“纯粹数学”这个词是从Sadleirian Chair(en:Sadleirian Chair)这个19世纪中期建立的教授职位的全名而来的。“纯粹”数学作为一门独立的学科的想法可能就是从那个时候发展起来的。高斯一代的数学家没有彻底地区分过“纯粹”和“应用”。之后,专门化和专业化,特别是魏尔施特拉斯研究数学分析的方法,使得两者的区别越来越大。

20世纪

进入20世纪,数学家们受到希尔伯特的影响,开始使用公理系统。罗素建立了“纯粹数学”的逻辑公式,以量化的命题为形式。随着数学的公理化,这些公式变得越来越抽象了,“严格证明”成为的简单的标准。

实际上,“严格”在“证明”中没有任何新意。以布尔巴基小组的观点,纯粹数学就是被证明了的。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/24 7:01:32