词条 | 传输线 |
释义 | 以横电磁 (TEM)模的方式传送电能和(或)电信号的导波结构。传输线的特点是其横向尺寸远小于工作波长。主要结构型式有平行双导线、平行多导线、同轴线、带状线,以及工作于准TEM模的微带线等,它们都可借助简单的双导线模型进行电路分析。各种传输TE模、TM模,或其混合模的波导都可认为是广义的传输线。波导中电磁场沿传播方向的分布规律与传输线上的电压、电流情形相似,可用等效传输线的观点分析。 简介音响系统中各设备间连接线,其质量会直接影响音响系统的音质和声音还原质量。传输线对声音信号的影响不仅限于直流电阻,由于分布参数、趋肤效应、多芯线失真等因素影响,随之而来的涡流损耗和电磁感应会对音质起到一定的破坏作用,导致不同频率信号通过导线时,阻抗不尽相同,相移量也有所没。传输线对声音信号的影响取决于导体导体材质(如铜、无氧铜、金、铝等)、线的几何结构(如线径、股数、绞合方式、导线外绝缘材料)以及线的技术工艺等多方面。在满足使用要求的前提下,传输线应尽可能短且与设备接触良好,并注意屏蔽和抗干扰问题,尽量减少声音信号损失(包括幅度、频率和相位三方面损失),常用的传输线有音频屏蔽线、数字线和音箱线等。 其他用途传输线也可以表述为用来传输电能量和信号的导线。 传输线就是用以引导电磁波的装置。 其他用途传输线也可以表述为用来传输电能量和信号的导线。 传输线就是用以引导电磁波的装置。 传输线方程定义又称电报方程,是说明传输线上电压U和电流I之间关系的微分方程组。按分布参数电路的观点,一小段传输线可等效为由分布电阻R1(欧/米)、分布电感L1(亨/米)、分布电导G1(西/米)和分布电容C1(法/米)等集总元件构成的T型网络(对无耗线,R1=G1=0),实际的传输线表示为各段等效网络的级联(图2)。 设传输线与z 轴平行、时谐信号(时谐因子为 )的传输角频率为ω、分布阻抗Z1=R1+jωL1、分布导纳Y1=G1+jωC1,则传输线方程可写成 (1) 其解U(z)和I(z)都由含因子的两项组成, 分别表示朝 ±z方向传播的行波,其中γ 称为传播常数,一般,传输线上的电压和电流各由上述两相反方向的行波合成,形成驻波分布。 传播常数描述电压或电流行波沿传输线行进过程中的衰减和相移的参量。通常,它是一个复常数 γ=α+jβ= (2) 式中α 称为衰减常数,单位是奈/米或分贝/米(1奈/米=8.686分贝/米);β称为相移常数,单位是弧度/米。 对于无耗线(R1=G1=0),有 (3) 分别说明行波过程中没有衰减;以及波行进一个波长有2π弧度的相位延迟。式中μ 和ε 分别为传输线所在媒质的导磁率和介电常数。 在传输线上行波的速度为 (4) 与频率f无关。 对于低损耗线(R1<<ωL1,G<<ωC1),近似有 (5) 特性阻抗传输线上行波传播时的电压与电流之比。通常它也是复常数 (6) 对无耗线 (7) 它与频率无关,仅取决于线本身的物理参数和几何尺寸,可表征线的“特性”,故称特性阻抗。 由于传输线横截面上电磁场的瞬时分布与二维静电场、静磁场的分布相似,因而可借助静电场和恒流磁场的方法分别计算分布参数C1和L1,从而算出特性阻抗Z0。通常是只计算C1,利用关系式(4),由公式Z0=1/υC1算出特性阻抗。 常用的平行双线和同轴线(图1)的特性阻抗公式为平行线 (8) 同轴线 (9) 式中εr为同轴线填充介质的相对介电常数。 反射系数 信号从源端经传输线传向终端,当终端接有负载阻抗ZL≠Z0时,则传向负载的入射波将激起从负载向源方向的反射波。传输线上某点处反射液电压与入射波电压之比为该点的电压反射系数,简称反射系数,通常是复数。对无耗线,反射系数 Γ=|Γ| ,沿线模|Γ|保持不变而幅角ψ呈线性变化。在负载端(反射点),|Γ|与ψ的初始值仅与比值ZL/Z0有关。 传输线上z点处的 Γ(z)与输入(视在)阻抗Z(z)=U(z)/I(z)的关系为 (10) 式中, 称为用Z0归一化的阻抗。当负载端Z(z)|z=L=Z0时,ΓL=0,线上只有传向负载的入射波,而没有从负载返回的反射波,称该传输线工作在阻抗匹配状态。 电压驻波比传输线上的反射波与入射波叠加后形成驻波,即沿线各点的电压和电流的振幅不同,以1/2波长为周期而变化。电压(或电流)振幅具有最大值的点,称为电压(或电流)驻波的波腹点;而振幅具有最小值的点,称为驻波的波谷点;振幅值等于零的点称为波节点。线上某电压波腹点与相邻波谷点的电压振幅之比称为电压驻波比,简称驻波比;其倒数称为行波系数。 电压与电流两种驻波曲线在空间上存在90°的相位差(波谷点位置相差1/4波长),即电压波腹点对应电流波谷点,反之亦然。图3是几种负载情形的电压驻波图型。 ρ为电压驻波比,则电压波腹点处的输入阻抗为ρZ0;波谷点处的输入阻抗为Z0/ρ。 反射系数模|Γ|与驻波比ρ 的关系为 (11) |Γ|=0时,ρ=1;|Γ|=1时,ρ=∞,因此,驻波比ρ常用于描述传输线的工作状态。 阻抗匹配目的是使传输线向负载有最大的功率转移,即要求负载阻抗与传输线的特性阻抗相等,相应地有|Γ|=0(或ρ=1)。如果负载阻抗与传输线的特性阻抗并不相等,就需要在传输线的输出端与负载之间接入阻抗变换器,使后者的输入阻抗作为等效负载而与传输线的特性阻抗相等,从而实现传输线上|Γ|=0。阻抗变换器的作用实质上是人为地产生一种反射波,使之与实际负载的反射波相抵消。在实际问题中,还需要考虑传输线输入端与信号源之间的阻抗匹。 高频馈电系统中的阻抗匹配十分重要,阻抗失配会使输送到负载的功率降低;传输大功率时易导致击穿;且由于输入阻抗的电抗分量随位置而改变,对信号源有频率牵引作用。 应用传输线不仅用于传送电能和电信号,还可以构成电抗性的谐振元件。例如,长度小于1/4波长的终端短路或开路的传输线,其输入阻抗是感抗或容抗;长度可变的短路线可用作调配元件(短截线匹配器)。又如长度为1/4波长的短路线或开路线分别等效于并联或串联谐振电路,称为谐振线;其中1/4波长短路线的输入阻抗为无穷大,可用作金属绝缘支撑等。此外,还可利用分布参数传输线的延时特性制成仿真线等电路元件。 传输线串扰串扰(Crosstalk)也称“交调干扰”,主要源自两个相邻导体之间所形成的互感与互容,如图所示。串扰会随着印制板的走线布局密度增加而变得越来越严重,尤其是长距离的`总线结构和频率较高且强度较大的信号线,更容易发生串扰现象。这种现象是经由互感和互容这样的寄生参数,将能量由一个传输线耦合到相邻的传输线上而造成的,因此串扰实际上是一种典型的EMI问题。 串扰包括电容耦合和电感耦合,电容耦合(容性串扰)通常是因为走线位于另一走线上方或参考层上方。这种串扰在平行线之间的影响要小一些,两条较长的布线之间会有相互电容效应。当其中一条线上的电压发生变化时,在另一条线上就会产生容性串扰。即会出现一个小的正脉冲,如同电源电压变化而诱发的;电感耦合(感性串扰)是由于布线的电感造成的天线效应及信号间的公共阻抗对不同回路的影响。当一条导线的磁场在相邻信号上感应出信号时,就会发生串扰现象。只要有开关电流引起的磁场,就会产生瞬时耦合电压。通常,微带线的串扰较带状线严重。 根据串扰所发生的位置,可将串扰分为前向串扰和后向串扰。信号从源端传输到负载端,将发生前向串扰;如果信号被反射到源端,就会发生后向串扰。互容性耦合对前向串扰来说是正,而对后向串扰来说为负。在一般情况下,后向串扰对系统的影响要比前向串扰大。 串扰不仅会出现在时钟或周期信号线上,同样会出现在数据、地址、控制和LO走线中,因此必须尽量避免。串扰值与介电常数、线宽和间距有关。 为在PCB板中避免串扰现象的发生,推荐以下布线建议。 (1) 提供正确的终端匹配阻抗,从而消除后向串扰。 (2) 尽可能减小布线的长度。 (3) 避免互相平行的走线布局,并保证走线间有一定的间隔,从而减小走线间的耦合。 (4) 降低走线的阻抗和信号的驱动电平。 (5) 尽量隔离时钟及高速互连等EMI较差的信号。 (6) 减小器件间的距离,器件布局合理。 (7) 敏感的器件尽量远离I/O互连接口、时钟及易受数据干扰和耦合影响的区域。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。