词条 | 四顶点定理 |
释义 | 四顶点定理是微分几何关于平面曲线的整体性质的定理。这定理指出,一条简单闭曲线的曲率函数,如果不是常值,便有至少四个局部极值。更确切地说,这函数有至少两个局部极大值和两个局部极小值。 1909年斯亚马达斯·穆科帕迪亚亚最先证明这定理对凸曲线(即有严格正曲率)成立。他的证明用到了以下结果:曲线上一点的曲率是极值,当且仅当在该点的密切圆与曲线有4点切触。(密切圆与曲线一般只有3点切触。)1912年阿道夫·克内泽尔证明了定理在一般情况成立。 四顶点定理的逆定理指,在圆上定义任意连续实值函数,使得有两个局部极大值和两个局部极小值,那么这函数是一条简单平面闭曲线的曲率函数。1971年赫尔曼·格卢克证出严格正函数的情形。他证明在n维球面预先定义曲率的更一般定理,以上结果是其特例。比约恩·达尔贝里在他1998年1月去世前不久,证明逆定理的完整版本。他的证法用到卷绕数,类似代数基本定理的拓扑证明。 这定理的一个推论是,任何在平面上滚动受重力作用的均匀板,都有至少四个平衡点。它的三维推广并不容易,实际上,存在少于四个平衡点的三维凸均匀体 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。