请输入您要查询的百科知识:

 

词条 事务处理概念与技术
释义

图书信息

出版社: 人民邮电出版社; 第1版 (2009年5月1日)

丛书名: 图灵原版计算机科学系列

平装: 1070页

正文语种: 英语

开本: 16

ISBN: 9787115195869

条形码: 9787115195869

尺寸: 23.1 x 18.8 x 5.1 cm

重量: 1.5 Kg

作者简介

作者:(美国)Jim Gray (美国)Andreas Reuter

Jim Gray ,(1944-2007)计算机科学大师,因在数据库和事务处理研究和实现方面的开创性贡献而获得1998年图灵奖。美国科学院、工程院两院院士,ACM和IEEE两会会士:他25岁成为加州大学伯克利分校计算机科学学院第一位博士。在IBM工作期间参与和主持了IMS、System R、SQUDS、DB2等项目的开发。后任职于微软研究院,主要关注应用数据库技术来处理各学科的海量信息。2007年1月独自驾船出海后失踪。

内容简介

《事务处理概念与技术(英文版)》从系统的角度全面阐述事务处理的概念和技术,其中涉及终端上的表示管理、通信子系统、操作系统、数据库、程序设计语言的运行时系统以及应用开发环境等。《事务处理概念与技术(英文版)》重点放在事务处理的基本概念上,主要阐述事务概念是如何用于解决分布式系统问题的,以及利用这些概念如何能够在有限的资金和风险范围内建立高性能、高可用性的应用系统。全书重点讲述了事务处理基础、容错基础知识、面向事务的计算、并发控制、恢复、事务型文件系统、系统概览等7个主题,介绍了事务的ACID特性、并发的理论和实践、事务管理和恢复技术等方面的内容,最后还介绍了一个非常重要的资源管理器的实现。《事务处理概念与技术(英文版)》主要面向计算机及相关专业的高年级本科生和研究生,适合作为事务处理导论、数据库系统、分布式系统、操作系统等课程的辅助教材,需要了解事务处理系统的开发人员也可将其作为基本参考书。

目录

Contents

PART ONE——The Basics of Transaction Processing

1 INTRODUCTION 3

1.1 Historical Perspective 3

1.2 What Is a TransacUon Processing System? 5

1.2.1 The End User's View of a Transaction Processing System 8

1.2.2 The Administrator/Operator's View of a TP System 9

1.2.3 Application Designer's View of a TP System 12

1.2.4 The Resource Manager's View of a TP System 18

1.2.5 TP System Core Services 21

1.3 A Transaction Processing System Feature List 22

1.3.1 Application Development Features 22

1.3.2 Repository Features 23

1.3.3 TP Monitor Features 26

1.3.4 Data Communications Features 29

1.3.5 Database Features 33

1.3.6 Operations Features 39

1.3.7 Education and Testing Features 40

1.3.8 Feature Summary 41

1.4 Summary 42

1.5 Historical Notes 43

Exercises 44

Answers 46

2 BASIC COMPUTER SCIENCE TERMINOLOGY 47

2.1 Introduction 47

2.1.1 Units 47

2.2 Basic Hardware 48

2.2.1 Memories 49

2.2.2 Processors 57

2.2.3 Communications Hardware 58

2.2.4 Hardware Architectures 59

2.3 Basic Software——Address Spaces, Processes, Sessions 62

2.3.1 Address Spaces 62

2.3.2 Processes, Protection Domains, and Threads 63

2.3.3 Messages and Sessions 66

2.4 Generic System Issues 67

2.4.1 Clients and Servers 67

2.4.2 Naming 69

2.4.3 Authentication 70

2.4.4 Authorization 71

2.4.5 Scheduling and Performance 72

2.4.6 Summary 74

2.5 Files 74

2.5.1 File Operations 74

2.5.2 File Organizations 75

2.5.3 Distributed Files 77

2.5.4 SQL 78

2.6 Software Performance 78

2.7 Transaction Processing Standards 80

2.7.1 Portability versus Interoperability Standards 80

2.7.2 APIs and FAPs 80

2.7.3 LU6.2, a de facto Standard 82

2.7.4 OSI-TP with X/Open DTP, a de jure Standard 83

2.8 Summary 85

Exercises 86

Answers 88

PART TWO——The Basics of Fault Tolerance

3 FAULT TOLERANCE 93

3.1 Introduction 93

3.1.1 A Crash Course in Simple Probability 93

3.1.2 An External View of Fault Tolerance 95

3.2 Definitions 98

3.2.1 Fault, Failure, Availability, Reliability 98

3.2.2 Taxonomy of Fault Avoidance and Fault Tolerance 99

3.2.3 Repair, Failfast, Modularity, Recursive Design 100

3.3 Empirical Studies 100

3.3.1 Outages Are Rare Events 100

3.3.2 Studies of Conventional Systems 101

3.3.3 A Study of a Fault-Tolerant System 103

3.4 Typical Module Failure Rates 105

3.5 Hardware Approaches to Fault Tolerance 109

3.5.1 The Basic N-Plex Idea: How to Build Failfast Modules 109

3.5.2 Failfast versus Failvote Voters in an N-Plex 109

3.5.3 N-Plex plus Repair Results in High Availability 112

3.5.4 The Voter's Problem 113

3.5.5 Summary 115

3.6 Software Is the Problem 115

3.6.1 N-Version Programming and Software Fault Tolerance 116

3.6.2 Transactions and Software Fault Tolerance 117

3.6.3 Summary 119

3.7 Fault Model and Software Fault Masking 119

3.7.1 An Overview of the Model 120

3.7.2 Building Highly Available Storage 122

3.7.3 Highly Available Processes 128

3.7.4 Reliable Messages via Sessions and Process Pairs 138

3.7.5 Summary of the Process-Message-Storage Model 147

3.8 General Principles 148

3.9 A Cautionary Tale——System Delusion 149

3.10 Summary 150

3.11 Historical Notes 151

Exercises 152

Answers 155

PART THREE——Transaction-Oriented Computing

4 TRANSACTION MODELS 159

4.1 Introduction 159

4.1.1 About this Chapter 160

4.2 Atomic Actions and Flat Transactions 160

4.2.1 Disk Writes as Atomic Actions 161

4.2.2 A Classification of Action Types 163

4.2.3 Flat Transactions 165

4.2.4 Limitations of Flat Transactions 171

4.3 Spheres of Control 174

4.3.1 Definition of Spheres of Control 174

4.3.2 Dynamic Behavior of Spheres of Control 176

4.3.3 Summary 180

4.4 A Notation for Explaining Transaction Models 180

4.4.1 What Is Required to Describe Transaction Models? 181

4.4.2 Elements of the Notation 183

4.4.3 Defining Transaction Models by a Set of Simple Rules 184

4.5 Flat Transactions with Savepoints 187

4.5.1 About Savepoints 187

4.5.2 Developing the Rules for the Savepoint Model 189

4.5.3 Persistent Savepoints 190

4.6 Chained Transactions 192

4.7 Nested Transactions 195

4.7.1 Definition of the Nesting Structure 195

4.7.2 Using Nested Transactions 198

4.7.3 Emulating Nested Transactions by Savepoints 200

4.8 Distributed Transactions 202

4.9 Multi-Level Transactions 203

4.9.1 The Role of a Compensating Transaction 204

4.9.2 The Use of Multi-Level Transactions 206

4.10 Open Nested Transactions 210

4.11 Long-Lived Transactions 210

4.11.1 Transaction Processing Context 212

4.11.2 The Mini-Batch 215

4.11.3 Sagas 217

4.12 Exotics 219

4.13 Summary 221

4.14 Historical Notes 222

Exercises 225

5 TRANSACTION PROCESSING MONITORS——An Overview 239

5.1 Introduction 239

5.2 The Role of TP Monitors in Transaction Systems 239

5.2.1 The Transaction-oriented Computing Style 241

5.2.2 The Transaction Processing Services 249

5.2.3 TP System Process Structure 252

5.2.4 Summary 258

5.3 The Structure of a TP Monitor 259

5.3.1 The TP Monitor Components 260

5.3.2 Components of the Transaction Services 263

5.3.3 TP Monitor Support for the Resource Manager Interfaces 266

5.4 Transactional Remote Procedure Calls: The Basic Idea 267

5.4.1 Who Participates in Remote Procedure Calls? 267

5.4.2 Address Space Structure Required for RPC Handling 268

5.4 3 The Dynamics of Remote Procedure Calls 270

5.4.4 Summary 273

5.5 Examples of the Transaction-Oriented Programming Style 274

5.5.1 The Basic Processing Loop 275

5.5.2 Attaching Resource Managers to Transactions: The Simple Cases 276

5.5.3 Attaching Resource Managers to Transactions: The Sophisticated Case 282

5.5.4 Using Persistent Savepoints 284

5.6 Terminological Wrap-Up 285

5.7 Historical Notes 286

Exercises 288

Answers 289

6 TRANSACTION PROCESSING MONITORS 293

6.1 Introduction 293

6.2 Transactional Remote Procedure Calls 295

6.2.1 The Resource Manager Interface 297

6.2.2 What the Resource Manager Has to Do in Support of Transactions 299

6.2.3 Interfaces between Resource Managers and the TP Monitor

301

6.2.4 Resource Manager Calls versus Resource Manager Sessions

304

6.2.5 Summary 312

6.3 Functional Principles of the TP Monitor 312

6.3.1 The Central Data Structures of the TPOS 313

6.3.2 Data Structures Owned by the TP Monitor 318

6.3.3 A Guided Tour Along the TRPC Path 324

6.3.4 Aborts Racing TRPCs 331

6.3.5 Summary 332

6.4 Managing Request and Response Queues 333

6.4.1 Short-Term Queues for Mapping Resource Manager Invocations 335

6.4.2 Durable Request Queues for Asynchronous Transaction Processing 336

6.4.3 Summary 347

6.5 Other Tasks of the TP Monitor 347

6.5.1 Load Balancing 347

6.5.2 Authentication and Authorization 354

6.5.3 Restart Processing 360

6.6 Summary 362

6.7 Historical Notes 364

Exercises 366

Answers 368

PART FOUR——Concurrency Control

7 ISOLATION CONCEPTS 375

7.1 Overview 375

7.2 Introduction to Isolation 375

7.3 The Dependency Model of Isolation 378

7.3.1 Static versus Dynamic Allocation 378

7.3.2 Transaction Dependencies 379

7.3.3 The Three Bad Dependencies 380

7.3.4 The Case for a Formal Model of Isolation 381

7.4 Isolation: The Application Programmer's View 382

7.5 Isolation Theorems 383

7.5.1 Actions and Transactions 383

7.5.2 Well-Formed and Two-Phased Transactions 385

7.5.3 Transaction Histories 385

7.5.4 Legal Histories and Lock Compatibility 386

7.5.5 Versions, Dependencies, and the Dependency Graph 387

7.5.6 Equivalent and Isolated Histories: BEFORE, AFTER, and Wormholes 388

7.5.7 Wormholes Are Not Isolated 389

7.5.8 Summary of Definitions 390

7.5.9 Summary of the Isolation Theorems 396

7.6 Degrees of Isolation 397

7.6.1 Degrees of Isolation Theorem 398

7.6.2 SQL and Degrees of Isolation 398

7.6.3 Pros and Cons of Low Degrees of Isolation 400

7.6.4 Exotic SQL Isolation——Read-Past and Notify Locks 402

7.7 Phantoms and Predicate Locks 403

7.7.1 The Problem with Predicate Locks 405

7.8 Granular Locks 406

7.8.1 Tree Locking and Intent Lock Modes 406

7.8.2 Update Mode Locks 409

7.8.3 Granular Locking Summary 410

7.8.4 Key-Range Locking 411

7.8.5 Dynamic Key-Range Locks: Previous-Key and Next-Key Locking 412

7.8.6 Key-Range Locks Need DAG Locking 414

7.8.7 The DAG Locking Protocol 415

7.8.8 Formal Definition of Granular Locks on a DAG 417

7.9 Locking Heuristics 419

7.10 Nested Transaction Locking 421

7.11 Scheduling and Deadlock 422

7.11.1 The Convoy Phenomenon 423

7.11.2 Deadlock Avoidance versus Toleration 424

7.11.3 The Wait-for Graph and a Deadlock Detector 425

7.11.4 Distributed Deadlock 426

7.11.5 Probability of Deadlock 428

7.12 Exotics 429

7.12.1 Field Calls 430

7.12.2 Escrow Locking and Other Field Call Refinements 432

7.12.3 Optimistic and Timestamp Locking 434

7.12.4 Time Domain Addressing 435

7.13 Summary 437

7.14 Historical Notes 438

Exercises 440

Answers 442

8 LOCK IMPLEMENTATION 449

8.1 Introduction 449

8.1.1 About This Chapter 449

8.1.2 The Need for Parallelism within the Lock Manager 449

8.1.3 The Resource Manager and Lock Manager Address Space 450

8.2 Atomic Machine Instructions 452

8.3 Semaphores 454

8.3.1 Exclusive Semaphores 454

8.3.2 Crabbing: Traversing Shared Data Structures 456

8.3.3 Shared Semaphores 458

8.3.4 Allocating Shared Storage 461

8.3.5 Semaphores and Exceptions 462

8.4 Lock Manager 464

8.4.1 Lock Names 464

8.4.2 Lock Queues and Scheduling 465

8.4.3 Lock Duration and Lock Counts 467

8.4.4 Lock Manager Interface and Data Structures 469

8.4.5 Lock Manager Internal Logic 471

8.4.6 Lock Escalation and Generic Unlock, Notify Locks 477

8.4.7 Transaction Savepoints, Commit, and Rollback 478

8.4.8 Locking at System Restart 479

8.4.9 Phoenix Transactions 480

8.4.10 Lock Manager Configuration and Complexity 481

8.4.11 Lock Manager Summary 481

8.5 Deadlock Detection 481

8.6 Locking for Parallel and Parallel Nested Transactions 483

8.7 Summary 484

8.8 Historical Notes 485

Exercises 485

Answers 488

PART FIVE——Recovery

9 LOG MANAGER 493

9.1 Introduction 493

9.1.1 Uses of the Log 493

9.1.2 Log Manager Overview 494

9.1.3 The Log Manager's Relationship to Other Services 495

9.1.4 Why Have a Log Manager? 496

9.2 Log Tables 496

9.2.1 Mapping the Log Table onto Files 497

9.2.2 Log Sequence Numbers 499

9.3 Public Interface to the Log 500

9.3.1 Authorization to Access the Log Table 500

9.3.2 Reading the Log Table 500

9.3.3 Writing the Log Table 502

9.3.4 Summary 503

9.4 Implementation Details of Log Reads and Writes 504

9.4.1 Reading the Log 504

9.4.2 Log Anchor 505

9.4.3 Transaction Related Anchors 505

9.4.4 Log Insert 506

9.4.5 Allocate and Flush Log Daemons 507

9.4.6 Careful Writes: Serial or Ping-Pong 508

9.4.7 Group Commit, Batching, Boxcarring 509

9.4.8 WADS Writes 510

9.4.9 Multiple Logs per Transaction Manager 511

9.4.10 Summary 511

9.5 Log Restart Logic 511

9.5.1 Saving the Transaction Manager Anchor 512

9.5.2 Preparing for Restart: Careful Writes of the Log Anchor 512

9.5.3 Finding the Anchor and Log End at Restart 513

9.6 Archiving the Log 514

9.6.1 How Much of the Log Table Should Be Online? 514

9.6.2 Low-Water Marks for Rollback, Restart, Archive 515

9.6.3 Dynamic Logs: Copy Aside versus Copy Forward 516

9.6.4 Archiving the Log Without Impacting Concurrent Transactions 517

9.6.5 Electronic Vaulting and Change Accumulation 518

9.6.6 Dealing with Log Manager-Archive Circularity 519

9.7 Logging in a Client-Server Architecture 519

9.8 Summary 520

9.9 Historical Notes 521

Exercises 521

Answers 523

10 TRANSACTION MANAGER CONCEPTS 529

10.1 Introduction 529

10.2 Transaction Manager Interfaces 529

10.2.1 The Application Interface to Transactions 531

10.2.2 The Resource Manager Interface to Transactions 534

10.2.3 Transaction Manager Functions 536

10.3 Transactional Resource Manager Concepts 538

10.3.1 The DO-UNDO-REDO Protocol 538

10.3.2 The Log Table and Log Records 540

10.3.3 Communication Session Recovery 541

10.3.4 Value Logging 545

10.3.5 Logical Logging 546

10.3.6 Physiological Logging 548

10.3.7 Physiological Logging Rules: FIX, WAL, and Force-Log-at-commit 550

10.3.8 Compensation Log Records 558

10.3.9 Idempotence of Physiological REDO 560

10.3.10 Summary 561

10.4 Two-Phase Commit: Making Computations Atomic 562

10.4.1 Two-Phase Commit in a Centralized System 563

10.4.2 Distributed Transactions and Two-Phase Commit 567

10.5 Summary 573

10.6 Historical Notes 574

Exercises 576

Answers 578

11 TRANSACTION MANAGER STRUCTURE 585

11.1 Introduction 585

11.2 Normal Processing 585

11.2.1 Transaction Identifiers 586

11.2.2 Transaction Manager Data Structures 586

11.2.3 MyTrid(), Status_Transaction(), Leave_Transaction(), Resume_Transaction() 590

11.2.4 Savepoint Log Records 591

11.2.5 Begin Work()592

11.2.6 Local CommiLWork(). 593

11.2.7 Remote Commit_Work(): Prepare() and Commit() 596

11.2.8 Save_Work() and Read_Context() 599

11.2.9 Rollback_Work() 601

11.3 Checkpoint 604

11.3.1 Sharp Checkpoints 605

11.3.2 Fuzzy Checkpoints 606

11.3.3 Transaction Manager Checkpoint 607

11.4 System Restart 609

11.4.1 Transaction States at Restart 610

11.4.2 Transaction Manager Restart Logic 610

11.4.3 Resource Manager Restart Logic, Identify() 613

11.4.4 Summary of the Restart Design 616

11.4.5 Independent Resource Managers 616

11.4.6 The Two-Checkpoint Approach: A Different Strategy 616

11.4.7 Why Restart Works 618

11.4.8 Distributed Transaction Resolution: Two-Phase Commit at Restart 620

11.4.9 Accelerating Restart 620

11.4.10 Other Restart Issues 621

11.5 Resource Manager Failure and Restart 622

11.6 Archive Recovery 622

11.7 Configuring the Transaction Manager 624

11.7.1 Transaction Manager Size and Complexity 624

11.8 Summary 624

Exercises 625

Answers 626

12 ADVANCED TRANSACTION MANAGER TOPICS 631

12.1 Introduction 631

12.2 Heterogeneous Commit Coordinators 631

12.2.1 Closed versus Open Transaction Managers 632

12.2.2 Interoperating with a Closed Transaction Manager 632

12.2.3 Writing a Gateway to an Open Transaction Manager 635

12.2.4 Summary of Transaction Gateways 638

12.3 Highly Available (Non-Blocking) Commit Coordinators 638

12.3.1 Heuristic Decisions Resolve Blocked Transaction Commit 640

12.4 Transfer-of-Commit 641

12.5 0ptimizations of Two-Phase Commit 643

12.5.1 Read-Only Commit Optimization 644

12.5.2 Lazy Commit Optimization 645

12.5.3 Linear Commit Optimization 645

12.6 Disaster Recovery at a Remote Site 646

12.6.1 System Pair Takeover 648

12.6.2 Session Switching at Takeover 649

12.6.3 Configuration Options: 1-Safe, 2-Safe, and Very Safe 651

12.6.4 Catch-up After Failure 652

12.6.5 Summary of System Pair Designs 653

12.7 Summary 654

12.8 Historical Notes 654

Exercises 655

Answers 656

PART SIX——Transactional File System:A Sample Resource Manager

13 FILE AND BUFFER MANAGEMENT 661

13.1 Introduction 661

13.2 The File System as a Basis for Transactional Durable Storage 662

13.2.1 External Storage versus Main Memory 662

13.2.2 The External Storage Model Used in this Book 668

13.2.3 Levels of Abstraction in a Transactional File and Database Manager 671

13.3 Media and File Management 673

13.3.1 Objects and Operations of the Basic File System 673

13.3.2 Managing Disk Space 677

13.3.3 Catalog Management for Low-Level File Systems 686

13.4 Buffer Management 688

13.4.1 Functional Principles of the Database Buffer 689

13.4.2 Implementation Issues of a Buffer Manager 697

13.4.3 Logging and Recovery from the Buffer's Perspective 708

13.4.4 Optimizing Buffer Manager Performance 714

13.5 Exotics 723

13.5.1 Side Files 724

13.5.2 Single-Level Storage 732

13.6 Summary 738

13.7 Historical Notes 739

Exercises 741

Answers 744

14 THE TUPLE-ORIENTED FILE SYSTEM 751

14.1 Introduction 751

14.2 Mapping Tuples into Pages 752

14.2.1 Internal Organization of Pages 752

14.2.2 Free Space Administration in a File 757

14.2.3 Tuple Identification 760

14.3 Physical Tuple Management 768

14.3.1 Physical Representation of Attribute Values 769

14.3.2 Physical Representation of Short Tuples 772

14.3.3 Special Aspects of Representing Attribute Values in Tuples 784

14.3.4 Physical Representation of Long Tuples 786

14.3.5 Physical Representation of Complex Tuples and Very Long Attributes 791

14.4 File Organization 794

14.4.1 Administrative Operations 795

14.4.2 An Abstract View on Different File Organizations via Scans 799

14.4.3 Entry-sequenced Files 806

14.4.4 System-Sequenced Files 811

14.4.5 Relative Files 814

14.4.6 Key-Sequenced Files and Hash Files 817

14.4.7 Summary 818

14.5 Exotics 819

14.5.1 Cluster Files 819

14.5.2 Partitioned Files 820

14.5.3 Using Transactions to Maintain the File System 821

14.5.4 The Tuple-Oriented File System in Current Database Systems 822

14.6 Summary 823

Exercises 824

Answers 825

15 ACCESS PATHS 831

15.1 Introduction 831

15.2 Overview of Techniques to Implement Associative Access Paths 833

15.2.1 Summary 835

15.3 Associative Access By Hashing 835

15.3.1 Folding the Key Value into a Numerical Data Type 836

15.3.2 Criteria for a Good Hash Function 838

15.3.3 Overflow Handling in Hash Files 845

15.3.4 Local Administration of Pages in a Hash File 848

15.3.5 Summary of Associative Access Based on Hashing 848

15.4 B-Trees 851

15.4.1 B-Trees: The Basic Idea 851

15.4.2 Performance Aspects of B-Trees 861

15.4.3 Synchronization on B-Trees: The Page-Oriented View 867

15.4.4 Synchronization on B-Trees: The Tuple-Oriented View 868

15.4.5 Recovering Operations on B-Trees 872

15.5 Sample Implementation of Some Operations on B-Trees 876

15.5.1 Declarations of Data Structures Assumed in All Programs 876

15.5 2 Implementation of the roadkoy Operation on a B-Tree 878

15.5.3 Key-Range Locking in a B-Tree 880

15.5.4 Implementation of the Insert Operation for a B-Tree:The Simple Case 882

15.5.5 Implementing B-Tree Insert: The Split Case 884

15.5.6 Summary 886

15.6 Exotics 886

15.6.1 Extendible Hashing 887

15.6.2 The Grid File 892

15.6.3 Holey Brick B-Trees 897

15.7 Summary 904

15.8 Historical Notes 905

Exercises 909

Answers 911

PART SEVEN——System Surveys

16 SURVEY OF TP SYSTEMS 917

16.1 Introduction 917

16.2 IMS 917

16.2.1 Hardware and Operating System Environment 918

16.2.2 Workflow Model 920

16.2.3 Program Isolation 923

16.2.4 Main Storage Databases and Field Calls 923

16.2.5 Data Sharing 924

16.2.6 Improved Availability and Duplexed Systems 925

16.2.7 DB2 927

16.2.8 Recent Evolution of IMS 928

16.3 CICS and LU6.2 928

16.3.1 CICS Overview 928

16.3.2 CICS Services 930

16.3.3 CICS Workflow 931

16.3.4 CICS Distributed Transaction Processing 932

16.3.5 LU6.2 934

16.4 Guardian 90 937

16.4.1 Guardian: The Operating System and Hardware 938

16.4.2 Pathway, Terminal Context, and Server Class Management 939

16.4.3 Transaction Management 941

16.4.4 Other Interesting Features 947

16.5 DECdta 947

16.5.1 ACMS's Three-Ball Workflow Model of Transaction Processing 948

16.5.2 ACMS Services 951

16.5.3 ACMS Summary 952

16.5.4 VMS Transaction Management Support 954

16.5.5 Summary of DECdta 958

16.5.6 Reliable Transaction Router (RTR) 959

16.6 X/Open DTP, OSI-TP, CCR 960

16.6.1 The Local Case 962

16.6.2 The Distributed Case: Services and Servers 964

16.6.3 Summary 964

16.7 Other Systems 965

16.7.1 Universal Transaction Manager (UTM) 965

16.7.2 ADABAS TPF966

16.7.3 Encina 968

16.7.4 Tuxedo 970

16.8 Summary 972

PART EIGHT——Addenda

17 REFERENCES 975

18 DATA STRUCTURES AND INTERFACES 993

19 GLOSSARY 1003

INDEX 1047

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/7 11:35:00