词条 | 实无穷 |
释义 | 数学上的实无穷思想是指:把无限的整体本身作为一个现成的单位,是已经构造完成了的东西,换言之,即是把无限对象看成为可以自我完成的过程或无穷整体。按照此观点,所有的自然数可以构成一个集合,因为可以将所有的自然数看做是一个完成了的无穷整体。康托的朴素集合论就是建立在实无穷的基础之上的。举个形象点的例子就是,一条线段上的点有无穷个,但是这条线段本身又是有限的。 数学上存在着潜无穷与实无穷之争,就如同哲学上存在着唯物主义与唯心主义之争。而且必将长时间的持续的争论不休。数学上的潜无穷思想是指:把无限看作永远在延伸着的,一种变化着成长着被不断产生出来的东西来解释。它永远处在构造中,永远完成不了,是潜在的,而不是实在。把无限看作为永远在延伸着的(即不断在创造着的永远完成不了的)过程。按照此观点,自然数不能构成为一个集合,因为这个集合是永远也完成不了的,它不能构成一个实在的整体,而是永远都在构造之中。举个形象点的例子就是,构成一条直线的点有无穷个,并且这条直线永远延伸着,不会有终结的一天。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。