请输入您要查询的百科知识:

 

词条 人工智能:复杂问题求解的结构和策略
释义

图书信息

出版社: 机械工业出版社; 第1版 (2009年3月1日)

丛书名: 经典原版书库

平装: 753页

正文语种: 英语

开本: 32

ISBN: 9787111256564

条形码: 9787111256564

尺寸: 20.8 x 14.6 x 3.2 cm

重量: 721 g

作者简介

作者:(美国)卢格尔 (Luger.G.F)

George F.Luger, 1973年在宾夕法尼亚大学获得博士学位,并在之后的5年间在爱丁堡大学人工智能系进行博士后研究,现在是新墨西哥大学计算机科学研究,语言学及心理学教授。

内容简介

《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》英文影印版由PearsonEducationAsiaLtd授权机械工业出版社独家出版。未经出版者书面许可,不得以任何方式复制或抄袭《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》内容。

仅限于中华人民共和国境内(不包括中国香港、澳门特别行政区和中国台湾地区)销售发行。

《人工智能:复杂问题求解的结构和策略(英文版)(第6版)》封面贴有PearsonEducation(培生教育出版集团)激光防伪标签,无标签者不得销售。

媒体评论

“在该领域里学生经常遇到许罗很难的概念,通过深刻的实例与简单明了的祝圈,该书清晰而准确垲阚述了这些概念。”

——Toseph Lewis,圣迭戈州立大学

“本书是人工智能课程的完美补充。它既给读者以历史的现点,又给幽所有莰术的宾用指南。这是一本必须要推荐的人工智能的田书。”

——-Pascal Rebreyend,瑞典达拉那大学

“该书的写作风格和全面的论述使它成为人工智能领域很有价值的文献。”

——Malachy Eaton,利默里克大学

目录

Preface

Publisher's Acknowledgements

PART Ⅰ ARTIFIClAL INTELLIGENCE:ITS ROOTS AND SCOPE

1 A1:HISTORY AND APPLICATIONS

1.1 From Eden to ENIAC:Attitudes toward Intelligence,Knowledge,andHuman Artifice

1.2 0verview ofAl Application Areas

1.3 Artificial Intelligence A Summary

1.4 Epilogue and References

1.5 Exercises

PART Ⅱ ARTIFlClAL INTELLIGENCE AS REPRESENTATION AN D SEARCH

2 THE PREDICATE CALCULUS

2.0 Intr0血ction

2.1 The Propositional Calculus

2.2 The Predicate Calculus

2.3 Using Inference Rules to Produce Predicate Calculus Expressions

2.4 Application:A Logic-Based Financial Advisor

2.5 Epilogue and References

2.6 Exercises

3 STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH

3.0 Introducfion

3.1 GraphTheory

3.2 Strategies for State Space Search

3.3 using the state Space to Represent Reasoning with the Predicate Calculus

3.4 Epilogue and References

3.5 Exercises

4 HEURISTIC SEARCH

4.0 Introduction

4.l Hill Climbing and Dynamic Programmin9

4.2 The Best-First Search Algorithm

4.3 Admissibility,Monotonicity,and Informedness

4.4 Using Heuristics in Games

4.5 Complexity Issues

4.6 Epilogue and References

4.7 Exercises

5 STOCHASTIC METHODS

5.0 Introduction

5.1 The Elements ofCountin9

5.2 Elements ofProbabilityTheory

5.3 Applications ofthe Stochastic Methodology

5.4 Bayes'Theorem

5.5 Epilogue and References

5.6 Exercises

6 coNTROL AND IMPLEMENTATION OF STATE SPACE SEARCH

6.0 Introduction l93

6.1 Recursion.Based Search

6.2 Production Systems

6.3 The Blackboard Architecture for Problem Solvin9

6.4 Epilogue and References

6.5 Exercises

PARTⅢ CAPTURING INTELLIGENCE:THE AI CHALLENGE

7 KNOWLEDGE REPRESENTATION

7.0 Issues in Knowledge Representation

7.1 A BriefHistory ofAI Representational Systems

7.2 Conceptual Graphs:A Network Language

7.3 Alternative Representations and Ontologies

7.4 Agent Based and Distributed Problem Solving

7.5 Epilogue and References

7.6 Exercises

8 STRONG METHOD PROBLEM SOLVING

8.0 Introduction

8.1 Overview ofExpert Sygem Technology

8.2 Rule.Based Expert Sygems

8.3 Model-Based,Case Based and Hybrid Systems

8.4 Planning

8.5 Epilogue and References

8.6 Exercises

9 REASONING IN UNCERTAIN STUATIONS

9.0 Introduction

9.1 Logic-Based Abductive Inference

9.2 Abduction:Alternatives to Logic

9.3 The Stochastic Approach to Uncertainty

9.4 Epilogue and References

9.5 Exercises

PART Ⅳ

MACHINE LEARNING

10 MACHINE LEARNING:SYMBOL-BASED

10.0 Introduction

10.1 A Framework for Symbol based Learning

10.2 version Space Search

10.3 The ID3 Decision Tree Induction Algorithm

10.4 Inductive Bias and Learnability

10.5 Knowledge and Learning

10.6 Unsupervised Learning

10.7 Reinforcement Learning

10.8 Epilogue and Referenees

10.9 Exercises

11 MACHINE LEARNING:CONNECTIONtST

11.0 Introduction

11.1 Foundations for Connectionist Networks

11.2 Perceptron Learning

11.3 Backpropagation Learning

11.4 Competitive Learning

11.5 Hebbian Coincidence Learning

11.6 Attractor Networks or“Memories”

11.7 Epilogue and References

11.8 Exercises 506

12 MACHINE LEARNING:GENETIC AND EMERGENT

12.0 Genetic and Emergent MedeIs ofLearning

12.1 11Ic Genetic Algorithm

12.2 Classifier Systems and Genetic Programming

12.3 Artmcial Life and Society-Based Learning

12.4 EpilogueandReferences

12.5 Exercises

13 MACHINE LEARNING:PROBABILISTIC

13.0 Stochastic andDynamicModelsofLearning

13.1 Hidden Markov Models(HMMs)

13.2 DynamicBayesianNetworksandLearning

13.3 Stochastic Extensions to Reinforcement Learning

13.4 EpilogueandReferences

13.5 Exercises

PART Ⅴ

AD,ANCED TOPlCS FOR Al PROBLEM SOLVING

14 AUTOMATED REASONING

14.0 Introduction to Weak Methods inTheorem Proving

14.1 TIIeGeneralProblem SolverandDifiel"enceTables

14.2 Resolution TheOrem Proving

14.3 PROLOG and Automated Reasoning

14.4 Further Issues in Automated Reasoning

14.5 EpilogueandReferences

14.6 Exercises

15 UNDERs-rANDING NATURAL LANGUAGE

15.0 TheNaturalLang~~geUnderstandingProblem

15.1 Deconstructing Language:An Analysis

15.2 Syntax

15.3 TransitionNetworkParsers and Semantics

15.4 StochasticTools forLanguage Understanding

15.5 Natural LanguageApplications

15.6 Epilogue and References

15.7 Exercises

……

PART Ⅵ EPILOGUE

16 ARTIFICIAL INTELLIGENCE AS EMPIRICAL ENQUIRY

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/15 22:53:43