请输入您要查询的百科知识:

 

词条 全息遥感技术
释义

全息遥感技术简介

亦称:“全息遥感”。一种利用光波的干涉记录被摄物体辐射(或透射)光波中信息(振幅、相位)的照相技术。全息遥感是通过一束参考光和被摄物体上反射的光叠加在感光片上产生干涉条纹而成。全息遥感不仅记录被摄物体(地物)反射光波的振幅(强度),而且还记录反射光波的相对相位。为了满足产生光的干涉条件,通常要用相干性好的激光作光源 ,而且光和照射物体的光是从同一束激光分离出来的。感光片显影后成为全息图。全息图并不直接显示物体的图像。用一束激光或单色光在接近参考光的方向入射,可以在适当的角度上观察到原物的像。这是因为激光束在全息图的干涉条纹上衍射而重现原物的光波。再现的图像具有三维立体感。在摄制全息图时感光片上每一点都接收到整个物体反射的光,因此,全息图的一小部分就可再现整个物体。用感光乳胶厚度等于几个光波波长的感光片,可在乳胶内形成干涉层,制成的全息图可用白光再现。如果用红、绿和蓝三种颜色的激光分别对同一物体用厚乳胶感光片上摄制影像影像,经适当的显影处理后,可得到能在白光(太阳光或灯光)下观察的有立体感和丰富色彩的彩色全息图。全息遥感在信号记录、形变计量、计算机存储、生物学和医学研究、军事技术等领域得到广泛的应用。全息摄影是指一种记录被摄物体反射波的振幅和位相等全部信息的新型摄影技术。普通摄影是记录物体面上的光强分布,它不能记录物体反射光的位相信息,因而失去了立体感。全息摄影采用激光作为照明光源,并将光源发出的光分为两束,一束直接射向感光片,另一束经被摄物的反射后再射向感光片。两束光在感光片上叠加产生干涉,感光底片上各点的感光程度不仅随强度也随两束光的位相关系而不同。所以全息摄影不仅记录了物体上的反光强度,也记录了位相信息。人眼直接去看这种感光的底片,只能看到像指纹一样的干涉条纹,但如果用激光去照射它,人眼透过底片就能看到原来被拍摄物体完全相同的三维立体像。一张全息摄影图片即使只剩下一小部分,依然可以重现全部景物。

原理

全息遥感技术是利用干涉和衍射原理记录并再现物体光波波前的一种技术。其第一步是利用干涉原理记录物体光波信息,此即拍摄过程:被摄物体在激光辐照下形成漫射式的物光束;另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的位相和振幅转换成在空间上变化的强度,从而利用干涉条纹间的反差和间隔将物体光波的全部信息记录下来。记录着干涉条纹的底片经过显影、定影等处理程序后,便成为一张全息图,或称全息照片;其第二步是利用衍射原理再现物体光波信息,这是成象过程:全息图犹如一个复杂的光栅,在相干激光照射下(图B),一张线性记录的正弦型全息图的衍射光波一般可给出两个象,即原始象(又称初始象)和共轭象。再现的图像立体感强,具有真实的视觉效应。全息图的每一部分都记录了物体上各点的光信息,故原则上它的每一部分都能再现原物的整个图像,通过多次曝光还可以在同一张底片上记录多个不同的图像,而且能互不干扰地分别显示出来。

全息影像可分为振幅型(又叫吸收型)和位相型两大类,它们按照与被记录时的曝光量相对应的方式分别改变照明光波的振幅或位相。如果根据干涉条纹的间距和感光膜层厚度的相对大小来划分,则有薄型(二维型或平面型)和厚型(三维型或体积型)两类全息照片。在厚型全息照片中,按拍摄时物光束与参考光束是否在感光膜的同侧入射,分为透射型全息照片和反射型全息照片。如按记录全息图时光路布局的不同分类,有同轴型全息图和离轴型全息图。

发展来源

一个世纪以前,当电报的发明人塞缪尔·摩尔斯第一次见到使用银版照相术拍摄下来的照片时,曾惊讶地认为,如此逼真的图像决不应当被称作大自然的复制品,它们就是自然本身的一部分。在如今见多识广的人们眼中,摩尔斯的反应未免有些大惊小怪。在这个数码相机能充分展现其魅力的时代中,没人会像当初圣彼得堡中初见照片的人们那样,害怕照片中的人会对自己眨眼睛,看出自己的想法。但是,当南巴黎大学的化学物理学家和胶片感光专家杰奎琳·贝洛妮(Jacqueline Belloni)在一次学术会议上将伊夫·根特制作的一幅蝴蝶的全息照片展示给大家时,一位恰巧同时也是蝴蝶标本收集爱好者的物理学家却非常费解地问她,到底为什么要在作学术报告时候展示这种鳞翅类昆虫的标本盒子。那位物理学家无论如何都不肯相信这只不过是一幅全息照片。

80年代初,法国全息摄影展在世界各地展览,人们欣赏到了神奇莫测的全息摄影。墙头上,看来明明伸出了一只水龙头,举手前去拧一下,结果是抓了个空;一只镜框,里面没有什么图像,可是当一束光射过来,框里就出现一位美丽的姑娘,她缓慢地摘下眼镜,正向人微笑致意;一只玻璃罩,里面空无一物,可是,在光的照射下,罩里马上现出维纳斯像;在镜框上,玻璃罩内,图像还在不断地变换。

全息遥感技术是全息学的一个典型的应用。全息学的原理适用于各种形式的波动,如X射线、微波、声波、电子波等。只要这些波动在形成干涉花样时具有足够的相干性即可。光学全息术可望在立体电影、电视、展览、显微术、干涉度量学、投影光刻、军事侦察监视、水下探测、金属内部探测、保存珍贵的历史文物、艺术品、信息存储、遥感,研究和记录物理状态变化极快的瞬时现象、瞬时过程(如爆炸和燃烧)等各个方面获得广泛应用。

全息遥感数据的拍摄要求

为了拍出一张满意的全息照片,拍摄系统必须具备以下要求:?

(1) 光源必须是相干光源?

通过前面分析知道,全息照相是根据光的干涉原理,所以要求光源必须具有很好的相干性。激光的出现,为全息照相提供了一个理想的光源。这是因为激光具有很好的空间相干性和时间相干性,实验中采用He-Ne激光器,用其拍摄较小的漫散物体,可获得良好的全息图。

(2) 全息照相系统要具有稳定性?

由于全息底片上记录的是干涉条纹,而且是又细又密的干涉条纹,所以在照相过程中极小的干扰都会引起干涉条纹的模糊,甚至使干涉条纹无法记录。比如,拍摄过程中若底片位移一个微米,则条纹就分辨不清,为此,要求全息实验台是防震的。全息台上的所有光学器件都用磁性材料牢固地吸在工作台面钢板上。另外,气流通过光路,声波干扰以及温度变化都会引起周围空气密度的变化。因此,在曝光时应该禁止大声喧哗,不能随意走动,保证整个实验室绝对安静。我们的经验是,各组都调好光路后,同学们离开实验台,稳定一分钟后,再在同一时间内爆光,得到较好的效果。?

(3) 物光与参考光应满足?

物光和参考光的光程差应尽量小,两束光的光程相等最好,最多不能超过2cm,调光路时用细绳量好;两速光之间的夹角要在30°~60°之间,最好在45°左右,因为夹角小,干涉条纹就稀,这样对系统的稳定性和感光材料分辨率的要求较低;两束光的光强比要适当,一般要求在1∶1~1∶10之间都可以,光强比用硅光电池测出。

(4) 使用高分辨率的全息底片?

因为全息照相底片上记录的是又细又密的干涉条纹,所以需要高分辨率的感光材料。普通照相用的感光底片由于银化物的颗粒较粗,每毫米只能记录50~100个条纹,天津感光胶片厂生产的I型全息干板,其分辨率可达每毫米3?000条,能满足全息照相的要求。

全息遥感技术的应用

除光学全息外,还发展了红外、微波和超声全息技术,这些全息技术在军事侦察和监视上有重要意义。我们知道,一般的雷达只能探测到目标方位、距离等,而全息照相则能给出目标的立体形象,这对于及时识别飞机、舰艇等有很大作用。因此,备受人们的重视。但是由于可见光在大气或水中传播时衰减很快,在不良的气候下甚至于无法进行工作。为克服这个困难发展出红外、微波及超声全息技术,即用相干的红外光、微波及超声波拍摄全息照片,然后用可见光再现物象,这种全息技术与普通全息技术的原理相同。技术的关键是寻找灵敏记录的介质及合适的再现方法。?

超声全息照相能再现潜伏于水下物体的三维图样,因此可用来进行水下侦察和监视。由于对可见光不透明的物体,往往对超声波透明,因此超声全息可用于水下的军事行动,也可用于医疗透视以及工业无损检测测等。

全息照相的方法从光学领域推广到其他领域。如微波全息、声全息等得到很大发展,成功地应用在工业医疗等方面。地震波、电子波、X射线等方面的全息也正在深入研究中。全息图有极其广泛的应用。如用于研究火箭飞行的冲击波、飞机机翼蜂窝结构的无损检验等。现在不仅有激光全息,而且研究成功白光全息、彩虹全息,以及全景彩虹全息,使人们能看到景物的各个侧面。全息三维立体显示正在向全息彩色立体电视和电影的方向发展。

全息技术不仅在实际生活中正得到广泛应用,而且在上世纪兴起并快速发展的科幻文学中也有大量描写和应用,有兴趣的话可去看看。 可见全息技术在未来的发展前景将是十分光明的。

普通的摄像是二维平面采样,而全息遥感摄像则是多角度摄像,并且将这些照片叠加。为了实现立体“叠加”,需要利用光的干涉原理,用单一的光线(常用投影机)进行照射,使物体反射的光分裂(分光技术)成多束相干光,将这些相干光叠加就能实现立体影像。全息摄像需要比普通摄像处理100倍以上的信息量,对拍摄以及处理和传输平台都提出了很高的要求。因此最早的全息技术仅用于处理静态的照片,而现在随着技术的发展,计算机运算速度的不断提升,处理和传输动态全息影像已经得以实现。 目前全息影像技术的应用领域主要在军事、地理、科学研究、媒介等领域,随着技术的成熟,今后实现民用化,那么我们在科幻片中见到的真人面对面的可视通话将会成为现实。

特点和优势

1、 再造出来的立体影像有利于保存珍贵的艺术品资料进行收藏。

2、 拍摄时每一点都记录在全息片的任何一点上,一旦照片损坏也关系不大。

3、 全息照片的景物立体感强,形象逼真,借助激光器可以在各种展览会上进行展示,会得到非常好的效果。

全息照相术的先驱——Emmett Leith教授

2005年12月23日,Emmett Leith教授这位伟大的科学巨匠,全息照相术的先驱因中

风不幸在美国Michigan州去世,终年78岁。

Leith 出生于底特律,就读于底特律维恩州立大

学,当时只获得学士和硕士学位。 毕业后在Michigan州科技研究所从事军用旁视综合孔径雷达的研究工作- 大家知道,旁视雷达是采用小型天线在飞行的不同位置收集目标的振幅和相位信号,然后综合出高分辨率的遥感图像,是一直到今天还在使用的所谓成像雷达。 年青的Leieh对它的发展作出了重要的贡献-,这也是他在几年后发明离轴全息术的出发点。

1979年,Leith因为对全息摄影技术的卓越贡献被美国总统授予美国国家科学奖

章, 这是除了诺贝尔奖之外在美国的最高的荣誉奖。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/7 3:09:21