词条 | 鲁棒优化 |
释义 | 数学规划的经典范例是在输入数据准确知道并且等于某些标称值的假设条件下建立模型, 并利用已有的数学规划求解方法得到最优解. 这种方法没有考虑数据不确定性的影响. 因此, 当数据的取值不同于标称值时, 一些约束可能不满足, 原来得到的最优解可能不再最优甚至变得不可行. 因此, 需要找到一种优化方法使得优化解免受数据不确定性的影响, 这种方法就是鲁棒优化方法。 鲁棒优化的目的是求得这样一个解, 对于可能出现的所有情况, 约束条件均满足, 并且使得最坏情况下的目标函数值最优. 其核心思想是将原始问题以一定的近似程度转化为一个具有多项式计算复杂度的凸优化问题, 关键是建立相应的鲁棒对等模型, 然后利用相关的优化理论将其转化为可求解的“近似”鲁棒对等问题,并给出鲁棒最优解 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。