词条 | 连通区域 |
释义 | 空间二维连通域形象说就是没有“洞”的区域,即设Ω是空间一区域,Ѕ是Ω内的任一闭曲面。以Ѕ为边界的区域ΩЅ Ω,最简单如球x2+y2+z2<1,是连通的。但x2+y2+z2≤1, x2+y2+z2≠0,则就不连通了! 一维连通是指,若Г是Ω内的任一闭曲线(曲线是一维的)。若存在以Г为边界的曲面∑,使∑ Ω,则Ω就是一维连通的。如一个圆(x-2)2+y2≤1,绕y轴旋转一周,所得的像一个车胎一样的空间域(也像救生圈)。那么这个圆的圆心旋转的一闭曲线(圆),以它为边界的任何曲面不可能包含在这个域内,显然这个域是面(二维)连通的,但不是线(一维)连通的。一维连通域主要用在空间线积分与路径无关的条件上。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。