词条 | 粒度计算在数据挖掘中的应用研究 |
释义 | 基本信息作 者:张霞 著 丛 书 名:出 版 社:中国物资出版社ISBN:9787504736468 出版时间:2011-07-01 版 次:1 页 数:153 装 帧:平装 开 本:16开 所属分类:图书 > 计算机与互联网 > 数据库 内容简介《粒度计算在数据挖掘中的应用研究》是对模糊粒度计算在文本软聚类中的应用进行了深入研究,提出了一种基于模糊粒度计算的聚类方法,并且利用该聚类方法对K-means算法进行了优化。基于模糊粒度计算的聚类是通过归一化的距离函数将聚类问题映射到距离空间,调节粒度产生对文本集合D的动态聚类划分。 动态聚类既可以作为一个单独的聚类结果,也可以作为其他算法的一个预处理步骤。K-means算法是一种经典的聚类算法,速度快、消耗资源小,但是算法对初始聚类中心点敏感,容易陷入局部最小值。《粒度计算在数据挖掘中的应用研究》将基于模糊粒度计算的聚类方法作为K-means算法的预处理步骤,实验结果证明,这种预处理有效地消除了K-means算法的初始值敏感问题,优化了K-means算法。 作者简介张霞,女,河北省石家庄市人。曾先后于兰州商学院经济信息管理系获得工学学士、北京科技大学信息工程学院获得工学硕士。2004年师从尹怡欣教授,就读于北京科技大学信息工程学院控制理论与控制工程专业,并于2009年6月获工学博士学位。自1998年至今,在河北经贸大学从事计算机教学的工作。曾主持河北省教育厅科研计划项目、河北省科学技术研究与发展计划项目:参与河北省科技支撑计划项目、河北省教育厅教改课题以及河北省哲学社会科学规划办公室等多项课题;发表近20篇核心期刊学术论文,其中4篇为EI收录论文。主要研究方向:数据挖掘、模式识别。 目录1 绪论 1.1 课题背景和意义 1.2 课题研究内容 1.3 主要创新点 1.4 本书的逻辑结构 2 文献综述 2.1 数据挖掘概述 2.2 粒度计算在数据挖掘中的应用 2.3 粒度计算数据挖掘研究中需要进一步解决的问题 2.4 本书的研究内容及特点 2.5 小结 3 基于模糊粒度计算的聚类 3.1 引言 3.2 模糊聚类分析 3.3 模糊粒度聚类基础 3.4 基于模糊粒度计算的文本聚类 3.5 基于模糊粒度计算的农业经济划分 3.6 基于模糊粒度计算的K-means优化算法 3.7 小结 4 基于粒网络生成规则的文本分类 4.1 引言 4.2 基于集合论的粒度分类基础 4.3 基于规则的机器学习 4.4 基于粒度计算的分类 4.5 基于粒网络生成规则的分类模型 4.6 基于粒网络生成规则的文本情感分类 4.7 小结 5 基于信息粒度的不完备系统遗漏值补齐 5.1 引言 5.2 粗糙集理论基本概念 5.3 知识发现中的不完备信息问题 5.4 不完备信息系统 5.5 不完备信息系统粒度模型构建 5.6 基于信息粒度的遗漏值补齐 5.7 决策规则的不确定性表示与度量 5.8 实验结果和分析 5.9 小结 6 结论 参考文献 附录 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。