请输入您要查询的百科知识:

 

词条 精算等价原理
释义

首先你要理解这两个概念:精算现值与精算等价原理。

保险实务中,纯保费与理赔额的发生通常不会在同一个时间点上,应该将两者放在同一个时间点上进行比较。一般将纯保费与理赔额折现到保单(policy)生效这个点上。这样,对纯保费和理赔额的比较就不能单纯的看其数额的大小,还要看资金的时间价值,保险标的物的死亡时间。为了解决这个问题,于是我们引入精算现值。精算现值与通常的资金现值的不同之处在于前者考虑了标的物死亡概率。收入(纯保费)与支出(理赔额)在保单生效时的精算现值相等就是所谓的“精算等价原理”,纯保费就是运用精算等价原理来计算的。

我以保险精算等价来对这个做出解释吧,比如:

PR[T(20)>50]=0.70等价于50P20=0.7

PR[T(20)≤30]=0.11推出PR[T(20)>30]=0.89等价于30P20=0.89

而有个公式是:

(T+U)PX=TPX*UP(X+T) 括号里面的也都是下标数字

推出:50P20=30P20*20P50

于是20P50=50P20/30P20=0.7/0.89=0.7865

文字来解释的话

这个题是这个意思:

已知一个20岁的人还能再活50年(即活到70岁)的概率是0.7

还已知一个20岁的人不能再多活30年的概率是0.11(也就是说一个20岁的人还能活到50岁的概率是0.89)

问:一个50岁的人还能多活20年(即活到70岁)的概率是多少?

而答案里的20P50=50P20/30P20就是说

一个50岁的人能活到70岁的概率=在已知“他(她)能从20岁活到50岁的概率”的条件下,他(她)能从20岁活到70岁的概率有多

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/16 0:02:40