请输入您要查询的百科知识:

 

词条 解的存在唯一性定理
释义

解的存在唯一性

解的存在唯一性定理是指方程的解在一定条件下的存在性和唯一性,它是常微分方程理论中最基本的定理,有其重大的理论意义,另一方面由于能求得精确解的微分方程并不多,常微分方程的近似解法具有十分重要的意义,而解的存在唯一性又是近似解的前提,试想,如果解都不存在,花费精力去求其近似解有什么意义呢?如果解存在但不唯一,但不知道要确定的是哪一个解,又要去近似的求其解,又是没有意义的。

解的存在唯一性定理一

定理1

如果函数f(x,y)在矩形域R上连续且关于y满足利普希茨条件,则方程dx/dy=f(x,y);存在唯一的解y=φ(x),定义于区间|x-x0|<=h上,连续且满足初值条件φ(x0)=y0,这里h=min(a,b/M) , M=max|f(x,y)|。

命题1

设y=φ(x)是方程的定义于区间x0<=x<=x0+h上,满足初值条件φ(x0)=y0的解,则y=φ(x)是积分方程y=y0+∫f(x,y)dx,x0<=x<=x0+h的定义于x0<=x<=x0+h上的连续解,反之亦然。

命题2

对于所有的n,皮卡逐步逼近函数φn(x)在 x0<=x<=x0+h上有定义,连续且满足不等式|φn(x)-y0|<=b。

命题3

函数序列{φn(x)} 在x0<=x<=x0+h上已收敛的。

命题4

φn(x)是积分方程的定义于x0<=x<=x0+h上的连续解

命题5

设ψ(x)是积分方程的定义于 x0<=x<=x0+h的另一个解,则ψ(x)=φ(x)(x0<=x<=x0+h)

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/26 15:05:47