词条 | A.格罗腾迪克 |
释义 | A.格罗腾迪克(1928-)生于法国,1966年获奖,他创立了一整套现代代数几何学抽象理论体系,对同调代数也有建树。 法国数学家格罗腾迪克,是20世纪最伟大的数学家之一,但他基本上属于另类,与学术界的数学家距离很远。他没有受过正规教育,也没有按部就班地在学术阶梯上晋升,而且在1970年以后完全脱离学术界。 格罗腾迪克于1928年3月24日生于柏林,13岁(1941年)作为难民来到法国。他父亲是俄国人,在二战中被纳粹杀害,母亲是德国人。格罗腾迪克在难民营中长大,受到一些初等教育,战后他到法国高等师范学校和法兰西学院听课。1949年起,他开始研究泛函分析,并取得突出结果。1953年,开始转向同调代数学,1957年转向代数几何学,14年间,完全改变代数几何学的面貌。196O—1970年,格罗腾迪克任法国高等科学研究院教授,197O年以后回家务农。 格罗腾迪克在代数几何学方面的贡献博大精深,大致可以分为10个方面:(1)连续与离散的对偶性(寻来范畴,6种演算);(2)黎曼-洛赫-格罗腾迪克定理,把黎曼一洛赫定理由代数曲线和代数曲囱推广到任意高维代数簇,其间发展了拓仆K理论;(3)概形概念的引入,使代数几何学还原为交换代数学;(4)拓扑斯理论;(5)平展上同调与L进上同调;(6)动形(motive)理论;(7)晶状上同调;(8)拓扑斯的上同调;(9)稳和拓扑;(10)非阿贝尔代数几何学。他和其他人合作出版十几部巨著,共1万页以上,成为代数几何学的圣经。 迄今为止,格罗腾迪克的著述中还有很多思想未被完全了解,但已经产生许多大结果,如德林证明韦伊猜想以及K理论的诞生。1984年,格罗腾迪克的手稿《纲领草案》在部分数学家中流传,1994年正式发表,其内容尚有待发掘,1988年瑞典科学院授予他克拉福德(Crafoord)奖,他拒绝领取,并痛斥当前的学术界腐败。不过,现在仍有许多同事和学生继续他的工作。 A.格罗腾迪克的故事亚历山大-格洛腾迪克是一位对数学对象极度敏感,对它们之间复杂而优美的结构有着深刻认识的数学家。他生平中的两个制高点——他是高等科学研究院(IHES)的创始成员之一,并在1966年荣获菲尔兹奖——就足以保证他在二十世纪数学伟人殿里的位置。但是这样的叙说远不足以反映他工作的精华,它深深植根于某种更有机更深层的东西里面。正如他在长篇回忆录《收获与播种》中所说:“构成一个研究人员的创造力和想象力的品质的东西,正是他聆听事情内部声音能力”(原书第27页)。今天格洛腾迪克自己的声音,蕴含在他的著作中,到达我们耳中,就如来自虚空:如今76岁的高龄,他已经在法国南部的一个小村落里隐居十多年了。 用密歇根大学海曼-巴斯的话来说,格洛腾迪克用一种“宇宙般普适”的观点改变了整个数学的全貌。如今这种观点已经如此深入吸收到数学研究里面,以至于对新来的研究者来说,很难想象以前并不是这样的。格洛腾迪克留下最深印迹的是代数几何学,在其中他强调通过发现数学对象间的联系来理解数学对象本身。他具有一种极其强大、几乎就是来自另外一个世界的抽象能力,让他能够从非常普适的高度来看待问题,而且他使用这种能力又是完美无缺的精确。事实上,从二十世纪中叶开始,在整个数学领域里不断加深的一般化和抽象化的潮流,在很大程度上归功于格洛腾迪克。同时,那些为一般化而一般化,以至于去研究一些毫无意义或者没有意思的数学问题,是他从来不感兴趣的。 格洛腾迪克在二次世界大战期间的早期生活充满混乱和伤害,并且他的教育背景并不是最好的。他如何从这样缺乏足够教育的开始脱颖而出,成为世界上的领袖数学家之一,是一出精彩的戏剧——同样,在1970年,正当他最伟大的成就在数学研究领域开花结果,而且数学研究正深受他非凡个性影响的时候,他突然离开了数学研究,也是富有戏剧性。 早期生活 对于我来说,我们高中数学课本最令人不满意的地方,是缺乏对长度、面积和体积的严格定义。我许诺自己,当我有机会的时候,我一定得填补这个不足。 格罗腾迪克相关介绍格罗腾迪克生于法国,1966年获奖,他创立了一整套现代代数几何学抽象理论体系,对同调代数也有建树。法国数学家格罗腾迪克,是2O世纪最伟大的数学家之一,但他基本上属于另类,与学术界的数学家距离很远。他没有受过正规教育,也没有按部就班地在学术阶梯上晋升,而且在1970年以后完全脱离学术界。 格罗腾迪克于1928年3月24日生于柏林,13岁(1941年)作为难民来到法国。他父亲是俄国人,在二战中被纳粹杀害,母亲是德国人。格罗腾迪克在难民营中长大,受到一些初等教育,战后他到法国高等师范学校和法兰西学院听课。1949年起,他开始研究泛函分析,并取得突出结果。1953年,开始转向同调代数学,1957年转向代数几何学,14年间,完全改变代数几何学的面貌。196O—1970年,格罗腾迪克任法国高等科学研究院教授,197O年以后回家务农。 格罗腾迪克给人类的贡献在代数几何学方面的贡献博大精深,大致可以分为1O个方面: (1)连续与离散的对偶性(寻来范畴,6种演算); (2)黎曼-洛赫-格罗腾迪克定理,把黎曼一洛赫定理由代数曲线和代数曲 囱推广到任意高维代数簇,其间发展了拓仆K理论; (3)概形概念的引入,使代数几何学还原为交换代数学; (4)拓扑斯理论; (5)平展上同调与L进上同调; (6)动形(motive)理论; (7)晶状上同调; (8)拓扑斯的上同调; (9)稳和拓扑; (10)非阿贝尔代数几何学。 他和其他人合作出版十几部巨著,共1万页以上,成为代数几何学的圣经。 迄今为止,格罗腾迪克的著述中还有很多思想未被完全了解,但已经产生许多 大结果,如德林证明韦伊猜想以及K理论的诞生。1984年,格罗腾迪克的手稿 《纲领草案》在部分数学家中流传,1994年正式发表,其内容尚有待发掘, 1988年瑞典科学院授予他克拉福德(Crafoord)奖,他拒绝领取,并痛斥当 前的学术界腐败。不过,现在仍有许多同事和学生继续他的工作。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。