词条 | 国外数学名著系列47:交换调和分析1 |
释义 | 图书信息出版社: 科学出版社; 第1版 (2009年1月1日) 外文书名: Commutative Harmonic Analysis I: General Survey, Classical Aspects 丛书名: 国外数学名著系列(续一)(影印版)47 精装: 268页 正文语种: 英语 开本: 16 ISBN: 9787030234902 条形码: 9787030234902 尺寸: 24 x 17.2 x 2 cm 重量: 581 g 作者简介作者:(俄罗斯)哈文 (V.P.Khavin) (俄罗斯)N.K.Nikol'skij 内容简介《国外数学名著系列(续1)(影印版)47:交换调和分析1(总论,古典问题)》主要内容包括:The first volume in this subseries of the Encyclopaedia 1S meant to familiarize the reader with the iscipline Commutative Harmonic AnalysiS.The first article is a thorough introduction,moving from Fourier series to the Fourier transform,and on to the group theoretic point ofview.Numerous examples illustrate the connections to differential and integral equationS,approximation theory,nutuber theory, probability theory and physics.The development of Fourier analysis is discussed in a brief historical essay. The second article focuses on some of the classical problems of Fourier series;it’S a"mini-Zygmund”for the beginner.The third article is the most modern of the three,concentrating on singular integral operators.It also contains an introduction to Calderon-Zygmund theory. 目录Introduction Chapter 1.A Short Course of Fourier Analysis of Periodic Functions §1.Translation-Invariant Operators 1.1.The Set up 1.2.Object ofInvestigation 1.3.Convolution 1.4.General Form oft.i.Operators §2.Harmonics.Basic Principles of Harmonic Analysis on the Circle 2.1.Eigenvectors and Eigenfunctions of t-i.Operators 2.2.Basic Principles of Harmonic Analysis on the Circle T 2.3.Smoothing ofDistributions 2.4.Weierstrass'Theorem 2.5.Fourier Coefficients.The Main Theorem of Harmonic Analysis on the Circle 2.6.Spectral Characteristics of the Classes * and * 2.7.L2-Theory of Fourier Series 2.8.Wirtinger'S Inequality 2.9.The lsoperimetric Inequality.(Hurwitz'Proof) 2.10.Harmonic Analysis on the Torus Chapter 2.Harmonic Analysis in Rd §1.Preliminaries on Distributions in Rd 1.1.Distributions in Rd §2.From the Circle to the Line.Fourier Transform in Rd(Definition) 2.1.Inversion Formula(An Euristic Derivation) 2.2.A Proofofthe Inversion Formula 2.3.Another Proof 2.4.Fourier Transform in Rd(Definition) §3.Convolution(Definition). 3.1.Difficulties of Harmonic Analysis in Rd 3.2.Convolution of Distributions(Construction) 3.3.Examples 3.4.Convolution Operators §4.Convolution Operators as Object of Study(Examples) 4.1.Linear Ditierential and Difference Operators. 4.2.Integral Operators with a Kernel Depending on Difference of Arguments. 4.3.Integration and Differentiation of a Fractional Order. 4.4.Hilbert Transform 4.5.Cauchy'S Problem and Convolution Operators 4.6.Fundamental Solutions.The Newtonian Potential 4.7 Distribution of the Sum of Independent Random Variables 4.8 Convolution Operators in Approximation Theory 4.9.The Impulse Response Function ofa System. §5.Means of InVestigation-Fourier Transform(S′-Theory and L2-Theory 5.1.Spaces S and S′ 5.2.S′-Theory of Fourier Transform.Preliminary Discussion 5.3.S′-Theory of Fourier Transform(Basic Facts) 5.4.L2 Theory. 5.5.“x-Representation”and“” §6.Fourier Transform in Examples 6.1.Some Formulae 6.2.Fourier Transform and a Linear Change of Variable 6.3 Digression:Heisenberg Uncertainty Principle 6.4.Radially-Symmetric Distributions 6.5 Harmonic Analysis of Periodic Functions 6.6.The Poisson Summation Formula 6.7.Minkowski'S Theorem on Integral Solutions of Systems of Linear Inequalities. 6.8.Jacobi's Identity for the 6.9.Evaluation ofthe Gaussian Sum. §7.Fourier Transform in Action.Spectral Analysis of Convolution Operators 7.1.Symbol 7.2.Construction of Fundamental Solutions 7.3.Hypoellipticity 7.4 Singular Integral Operators and PDO 7.5 The Law of Large Numbers and Central Limit Theorem 7.6. 7.7.Tauberian Theorems 7.8.Spectral Characteristic of a System. 7.9. More on Summation Methods 8. Additional Remarks 8.1. Fourier Transform in. Ultra-Distributions 8.2. Certain Generalizations of the L2-Theory 8.3. Radon Transform Chapter 3. Harmonic Analysis on Groups 1. An Outline of Harmonic Analysis on a Compact Group 1.1. A New Set Up 1.2. Harmonics 1.3. Representations 1.4. The Peter-H. Weyl Theorem 2. Commutative Harmonic Analysis 2.1. Simplifications Implied by Commutativity 2.2. Fourier Transform of Measures and Summable Functions 2.3. Convolution 2.4. Uniqueness Theorem. The Inversion Formula 2.5. Classical Harmonic Analysis from a General Point of View 2.6. Fast Multiplication of Large Numbers 2.7. Plancherel's Theorem 2.8. The Theorem of Bochner and A. Weil 3. Examples 3.1. Pontryagin's Duality Theorem 3.2. Almost Periodic Functions 3.3. Quadratic Reciprocity Law 4. Unitary Representations of the Group R 4.1. Stone's Theorem 4.2. Infinitesimal Generator 4.3. Examples Chapter 4. A Historical Survey Chapter 5. Spectral Analysis and Spectral Synthesis. Intrinsic Problems of Harmonic Analysis 1. Harmonic Analysis "For Itself" 2. Spectral Analysis 2.1. Linear Combination of Exponentials 2.2. Generalizations 2.3. Spectrum 3. Spectral Synthesis 3.1. Methods of Synthesis 3.2. Spectral Analysis-Synthesis of t.i. Operators According to L. Schwartz 3.3. Continuation, Periodicity in the Mean and Stability 3.4. Problems of Translation 3.5. Exceptional Sets 4. Translation-Invariant Operators. Singular Integrals, Multipliers 5. Complex-Analytic Methods Epilogue Bibliographical Notes References |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。