词条 | 玻尔氢原子理论 |
释义 | N.玻尔首创的第一个将量子概念应用于原子现象的理论。1911年E.卢瑟福提出原子核式模型,这一模型与经典物理理论之间存在着尖锐矛盾,原子将不断辐射能量而不可能稳定存在;原子发射连续谱,而不是实际上的离散谱线。玻尔着眼于原子的稳定性,吸取了M.普朗克、A. 爱因斯坦的量子概念,于1913年考虑氢原子中电子圆形轨道运动,提出原子结构的玻尔理论 玻尔氢原子理论简介理论的三条基本假设是: ①定态假设原子只能处于一系列不连续的能量的状态中,在这些状态中原子是稳定的,这些状态叫定态。原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应,原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的,电子在这些可能的轨道上的运动是一种驻波形式的振动。 ②跃迁假设原子系统从一个定态过渡到另一个定态,伴随着光辐射量子的发射和吸收。辐射或吸收的光子的能量由这两种定态的能量差来决定,即hν=|E初-E末| ③轨道量子化电子绕核运动,其轨道半径不是任意的,只有电子在轨道上的角动量满足下列条件的轨道才是可能的:mvr=nh/(2π) (n=1,2,3…) 式中的n是正整数,称为量子数。 玻尔理论在氢原子中的应用⑴氢原子核外电子轨道的半径设电子处于第n条轨道,轨道半径为(rn),根据玻尔理论的轨道量子化得 m(vn)(rn)=mvr=nh/(2π) (n=1,2,3…)① 电子绕核作圆周运动时,由电子和原子核之间的库仑力来提供向心力,所以有 m(vn)^2/(rn)=1/(4πε0)*[e^2/(rn)^2]② 由①②式可得(rn)=ε0h^2*n^2/(πme^2) (n=1,2,3…) 当n=1时,第一条轨道半径为r1=ε0h^2/(πme^2) =5.3*10^-11(m),其他可能的轨道半径为(rn)=r1,4r1,9r1,25r1… ⑵氢原子的能级当电子在第n条轨道上运动时,原子系统的总能量E叫做第n条轨道的能级,其数值等于电子绕核转动时的动能和电子与原子的电势能的代数和 En=1/2*m*(vn)^2-e^2/(4πε0(rn))③ 由②式得1/2*m*(vn)^2=e^2/(8πε0(rn))④ 将④式代入③式得En=-me^4/(8(ε0)^2h^2n^2)⑤ 这就是氢原子的能级公式 当n=1时,第一条轨道的能级为E1==-me^4/(8(ε0)^2h^2)=-13.6eV.其他可能轨道的能级为En=E1/n^2=-13.6/n^2(eV)(n=2,3,4…) 由轨道半径的表达式可以看出,量子数n越大,轨道的半径越大,能级越高.n=1时能级最低,这时原子所处的状态称为基态,n=2,3,4,5…时原子所处的状态称为激发态. ⑶玻尔理论对氢光谱的解释由玻尔理论可知,氢原子中的电子从较高能级(设其量子数为n)向较低能级(设其量子数为m)跃迁时,它向外辐射的光子能量为hν=En-Em=-me^4/(8(ε0)^2h^2)(1/n^2-1/m^2) 由于c=λν,上式可化为1/λ=me^4/(8(ε0)^2h^2)(1/m^2-1/n^2) 将上式和里德伯公式作比较得R=me^4/(8(ε0)^2h^3c)=1.097373*10^7m^(-1) 这个数据和实验所得的数据1.0967758*10^7m^(-1)基本一致,因此用玻尔理论能较好的解释氢原子的光谱规律,包括氢原子的各种谱线系.例如: 赖曼系、巴尔末系、帕邢系、布喇开系等的规律。 但是玻尔理论也有它的局限性。一方面,它在解决核外电子的运动时引入了量子化的观念,但同时又应用了“轨道”等经典概念和有关向心力、牛顿第二定律等牛顿力学的规律,实际上牛顿力学在微观领域是不适用的。因此,除了氢光谱之外,玻尔理论在其他问题上遇到了很大的困难,20世纪20年代诞生了量子力学。在量子力学中,玻尔理论中的电子轨道只不过是电子出现机会最多的地方。量子力学以全新的观念阐明了微观世界的基本规律,在涉及微观运动的各个领域都获得了巨大的成功。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。