词条 | 度规积分导论 |
释义 | 图书信息作者:徐际宏 出版社: 科学出版社; 第1版 (2011年6月1日) 平装: 120页 正文语种: 简体中文 开本: 16 ISBN: 9787030309587 条形码: 9787030309587 产品尺寸及重量: 23.4 x 16.4 x 0.8 cm ; 181 g 内容简介度规积分是近半个世纪内新近出现和发展起来的一种新型积分理论。它“形似黎曼积分”又“强于勒贝格积分”,在理论和应用上有着广阔的前景。徐际宏编著的这本《度规积分导论》以较小的篇幅简明集中地介绍 度规积分的基本理论、基本思想和基本方法,同时紧密联系黎曼积分、勒贝格积分理论中的相应内容进行比较分析,探究不同积分理论之间的区别与联系。 《度规积分导论》内容安排和文字叙述平实流畅,推理论证严谨明晰,例题丰富典型。适合具备一元微积分理论基础,尤其是学过实分析课程的读者阅读,也可作为有关专业方向的研究生或本科高年级选修课的教材。 编辑推荐徐际宏编著的这本《度规积分导论》主要针对(一维)紧区间上的实函数阐述和讨论拓广大Riemann积分(即R*积分)的基本概念、基本理论和基本方法,紧密联系当前作为主流积分的Riemann积分理论和Lebsgue积分理论的相应内容进行对比分析,引导读者了解R*积分这一新型积分理论的基本内容和思想方法,同时加深对不同类型积分理论之间的联系和区别以及各自特点,对积分理念经的新发展的认识和理解。 目录前言 第1章 度规积分的定义和基本性质 1.1 δ-细度带标分划 1.2 度规积分定义 1.3 R*可积函数的某些例子 1.4 R*积分的基本性质 第2章 微积分基本定理 2.1 微积分基本定理 2.2 不定积分 2.3 分部积分 2.4 换元积分 2.5 Hake定理 第3章 绝对可积性与绝对连续性 3.1 R*积分不具有绝对可积性 3.2 R*可积函数为绝对可积的充分必要条件 3.3 R*可积与L可积 第4章 积分极限定理 4.1 单调收敛定理 4.2 Fatou引理 4.3 Lebesgue控制收敛定理 第5章 可测函数与可测集 5.1 阶梯函数和正则函数 5.2 可测函数的概念和运算 5.3 可测集 5.4 函数可测的充分必要条件 5.5 可测集上的及R*积分 第6章 带标分划在微分学中的应用 6.1 紧区间上的δ-细度带标分划和实数集的完备性 6.2 δ-带标分划在证明有界闭区间上连续函数重要性质上的应用 6.3 有关导数应用的一些命题 参考文献 索引 记号表 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。