词条 | AMAR模型 |
释义 | ARMA 模型(Auto-Regressive and Moving Average Model)是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础“混合”构成。在市场研究中常用于长期追踪资料的研究,如:Panel研究中,用于消费行为模式变迁研究;在零售研究中,用于具有季节变动特征的销售量、市场规模的预测等。 ARMA模型的基本原理将预测指标随时间推移而形成的数据序列看作是一个随机序列,这组随机变量所具有的依存关系体现着原始数据在时间上的延续性。一方面,影响因素的影响,另一方面,又有自身变动规律,假定影响因素为x1,x2,…,xk,由回归分析, 其中Y是预测对象的观测值, e为误差。作为预测对象Yt受到自身变化的影响,其规律可由下式体现, 误差项在不同时期具有依存关系,由下式表示, 由此,获得ARMA模型表达式: 模型的基本形式ARMA模型分为以下三种: 1.自回归模型(AR:Auto-regressive)如果时间序列yt满足 其中εt是独立同分布的随机变量序列,且满足: 以及 E(εt) = 0 则称时间序列为yt服从p阶的自回归模型。 自回归模型的平稳条件: 滞后算子多项式 的根均在单位圆外,即φ(B) = 0的根大于1。 2.移动平均模型(MA:Moving-Average)如果时间序列yt满足 ,则称时间序列为yt服从p阶移动平均模型; 移动平均模型平稳条件:任何条件下都平稳。 3.混合模型(ARMA)如果时间序列yt满足: 则称时间序列为yt服从(p,q)阶自回归滑动平均混合模型。或者记为φ(B)yt = θ(B)εt |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。