请输入您要查询的百科知识:

 

词条 闵可夫斯基不等式
释义

概述

在数学中,闵可夫斯基不等式(Minkowski inequality)表明Lp空间是一个赋范向量空间。设S是一个 度量空间,,那么,我们有:

如果,等号成立当且仅当,或者g = kf

闵可夫斯基不等式是Lp(S)中的三角不等式。它可以用赫尔德不等式来证明。和赫尔德不等式一样,闵可夫斯基不等式取可数测度可以写成序列或向量的特殊形式:

对所有实数 ,这里nS的维数;改成复数同样成立,没有任何难处。

值得指出的是,如果,p < 1,则可以变为。

积分形式的证明

我们考虑的p次幂:

(用三角形不等式展开 | f(x) + g(x) | )

(用 赫尔德不等式)

(利用p = qpq,因为)

现在我们考虑这个不等式序列的首尾两项,除以最后那个表达式的后面那个因子,我们得到:

因为,我们最终得出:

这就是我们所要的结论。

对于序列的情况,证明是完全类似的。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/27 2:09:50