词条 | 坐标正算 |
释义 | 坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。 计算实例实例1,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为: XB=XA+ΔXAB (5.1) YB=YA+ΔYAB (5.2) 式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。由图5.3中,根据三角函数,可写出坐标增量的计算公式为: ΔXAB=DAB·cosαAB (5.3) ΔYAB=DAB·sinαAB (5.4) 式中ΔX、ΔY的符号取决于方位角α所在的象限。 实例2. 已知直线B1的边长为125.36m,坐标方位角为211°07′53〃,其中一个端点B的坐标为(1536.86 ,837.54),求直线另一个端点1的坐标X1,Y1。 解: 先代入公式(5.3)、(5.4),求出直线B1的坐标增量: ΔXB1=DB1·CosαB1=125.36×cos211°07′53〃=-107.31m ΔYB1=DB1·sinαB1=125.36×sin211°07′53〃〃=-64.81m 然后代入公式(5.1)、(5.2),求出直线另一端点1的坐标: X1=XB+ΔXB1=1536.86-107.31=1429.55m Y1=YB+ΔYB1=837.54-64.81=772.73m 坐标增量计算也常使用小型计算器计算,而且非常简单。如使用fx140等类型的计算器,可使用功能转换键INV和极坐标与直角坐标换算键P→R以及x←→y键。按键顺序为: D INV P→R α = 显示ΔX X←→y 显示ΔY。 如上例,按125.36 INV P→R 211°07′53〃= 显示-107.31(ΔXB1); 按 x←→y 显示-64.81(ΔYB1) |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。