词条 | 最小堆 |
释义 | 介绍最大堆和最小堆是二叉堆的两种形式。 最大堆:根结点的键值是所有堆结点键值中最大者。 最小堆:根结点的键值是所有堆结点键值中最小者。 而最大-最小堆集结了最大堆和最小堆的优点,这也是其名字的由来。 最大-最小堆是最大层和最小层交替出现的二叉树,即最大层结点的儿子属于最小层,最小层结点的儿子属于最大层。 以最大(小)层结点为根结点的子树保有最大(小)堆性质:根结点的键值为该子树结点键值中最大(小)项。 最小堆的实现#include <iostream> using namespace std; template<class T> class MinHeap { private: T *heap; //元素数组,0号位置也储存元素 int CurrentSize; //目前元素个数 int MaxSize; //可容纳的最多元素个数 void FilterDown(const int start,const int end); //自上往下调整,使关键字小的节点在上 void FilterUp(int start); //自下往上调整 public: MinHeap(int n=1000); ~MinHeap(); bool Insert(const T &x); //插入元素 T RemoveMin(); //删除最小元素 T GetMin(); //取最小元素 bool IsEmpty() const; bool IsFull() const; void Clear(); }; template<class T> MinHeap<T>::MinHeap(int n) { MaxSize=n; heap=new T[MaxSize]; CurrentSize=0; } template<class T> MinHeap<T>::~MinHeap() { delete []heap; } template<class T> void MinHeap<T>::FilterUp(int start) //自下往上调整 { int j=start,i=(j-1)/2; //i指向j的双亲节点 T temp=heap[j]; while(j>0) { if(heap[i]<=temp) break; else { heap[j]=heap[i]; j=i; i=(i-1)/2; } } heap[j]=temp; } template<class T> void MinHeap<T>::FilterDown(const int start,const int end) //自上往下调整,使关键字小的节点在上 { int i=start,j=2*i+1; T temp=heap[i]; while(j<=end) { if( (j<end) && (heap[j]>heap[j+1]) ) j++; if(temp<=heap[j]) break; else { heap[i]=heap[j]; i=j; j=2*j+1; } } heap[i]=temp; } template<class T> bool MinHeap<T>::Insert(const T &x) { if(CurrentSize==MaxSize) return false; heap[CurrentSize]=x; FilterUp(CurrentSize); CurrentSize++; return true; } template<class T> T MinHeap<T>::RemoveMin( ) { T x=heap[0]; heap[0]=heap[CurrentSize-1]; CurrentSize--; FilterDown(0,CurrentSize-1); //调整新的根节点 return x; } template<class T> T MinHeap<T>::GetMin() { return heap[0]; } template<class T> bool MinHeap<T>::IsEmpty() const { return CurrentSize==0; } template<class T> bool MinHeap<T>::IsFull() const { return CurrentSize==MaxSize; } template<class T> void MinHeap<T>::Clear() { CurrentSize=0; } //最小堆:根结点的键值是所有堆结点键值中最小者。 int main () { int k,n=11,a[11]={0,5,2,4,9,7,3,1,10,8,6}; MinHeap<int> test(11); for(k=0; k<n; k++) test.Insert(a[k]); cout<<test.IsFull()<<endl; for(k=0;k<n;k++) cout<<test.RemoveMin()<<ends; cout<<endl; return 0; } |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。