请输入您要查询的百科知识:

 

词条 自由电子激光器
释义

简介

一种利用自由电子的受激辐射,把相对论电子束的能量转换成相干辐射的激光器件。自由电子受激辐射的设想曾于1951年由Motz提出,并在1953年进行过实验,因受当时条件的限制,未能得到证实。1974年斯坦福大学的Madey等人重新提出了恒定横向周期磁场中的场致受激辐射理论,并首次在毫米波段实现了受激辐射;1976年Madey小组第一次实现了激光放大,1977年4月斯坦福大学Deacon等人才研制成第一台自由电子激光振荡器。它由一根抽成真空的长5.2米的铜管组成,外面绕有超导导线,以便在整个管上产生一个周期为3.2厘米的变化的横向静磁场(如图),轴上磁感应强度

B_0为0.24特斯拉。铜管两端装有反射镜组成谐振腔,腔长12.7米,输出镜面的反射率为1.5%,能散度小于3\\times10^{-3}的43.5兆电子伏的电子束由超导加速器产生。

工作原理

自由电子激光的物理原理是利用通过周期性摆动磁场的高速电子束和光辐射场之间的相互作用,使电子的动能传递给光辐射而使其辐射强度增大。利用这一基本思想而设计的激光器称为自由电子激光器(简称FEL)。如图1所示,一组扭摆磁铁可以沿z轴方向产生周期性变化的磁场.磁场的方向沿Y轴。由加速器提供的高速电子束经偏转磁铁D导入摆动磁场。由于磁场的作用.电子的轨迹将发生偏转而沿着正弦曲线运动,其运动周期与摆动磁场的相同。这些电子在XOZ面内摇摆前进.沿x方向有一加速度.因而将在前进的方向上自发地发射电磁波。辐射的方向在以电子运动方向为中心的一个角度范围内。

它的工作原理可简述如下。由加速器产生的高能电子经偏转磁铁注入到极性交替变换的扭摆磁铁中。电子因做扭摆运动而产生电磁辐射(光脉冲),光脉冲经下游及上游两反射镜反射而与以后的电子束团反复发生作用。结果是电子沿运动方向群聚成尺寸小于光波波长的微小的束团。这些微束团将它们的动能转换为光场的能量,使光场振幅增大。这个过程重复多次,直到光强达到饱和。作用后的电子则经下游的偏转磁铁偏转到系统之外。以上是FEL产生过程的比较形象的描述。从物理学角度看,这个过程就是电子对辐射的受激康普顿散射的结果。这里一个最为关键的环节是电子要聚集成许多短于光波波长的束团。因为,只有这样它的辐射才是相干的,而FEL的技术难度,恰恰也正在于此。电子束性能必须十分优越(能量分散小,方向分散小,时间稳定度高……),同时流强尽可能大,才能达到要求,显然,FEL工作波长愈短,技术难度也就愈大。

通过稳定的电子束来泵浦,配置电子贮存环让电子束再加速并再循环使用,用静电方法或逆向运转的射频线性加速器使电子减速以充分利用出射电子束的剩余能量,使用上述任何一种方法都可以进一步增大总体效率。自由电子激光器输出的激光波长\\lambda _s与电子的能量E有关:\\lambda _s \\sim 1/E^2,故改变电子束的加速电压就可以改变激光波长,这叫做电压调谐,其调谐范围很宽,原则上可以在任意波长上运转。在现有的电子枪和加速器的实验条件下,可以获得从毫米波到1000Å的光频波段范围内的连续调谐的相干辐射。自由电子激光器的输出功率与电子束的能量、电流密度以及磁感应强度B_0有关,它可望成为一种高平均功率、高效率(理论极限达40%)、高分辨率的具有稳定功率和频率输出的激光器件,采用它能够避免某些工艺上的麻烦(如激光工作物质稀缺、有毒或腐蚀金属、玻璃),另外,它基本上不存在使用寿命问题。

发展前景

自由电子激光器在短波长、大功率、高效率和波长可调节这四大主攻方向上,为激光学科的研究开辟了一条新途径,它可望用于对凝聚态物理学、材料特征、激光武器、激光反导弹、雷达、激光聚变、等离子体诊断、表面特性、非线性以及瞬态现象的研究,在通讯、激光推进器、光谱学、激光分子化学、光化学、同位素分离、遥感等领域,它应用的前景也很可观。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/15 11:34:26