词条 | 中位线 |
释义 | 1.中位线概念(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。 (2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。 注意: (1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。 (2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。 (3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。 2.中位线定理(1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 如图,三角形两边中点的连线(中位线)平行于第BC边,且等于第三边的一半。 三角形的中位线所构成的小三角形面积是原三角形面积的四分之一。 证明如图,已知△ABC中,D,E分别是AB,AC两边中点。 求证DE平行且等于BC/2 法一:过C作AB的平行线交DE的延长线于F点。 ∵CF∥AD ∴∠A=∠ACF ∵AE=CE、∠AED=∠CEF ∴△ADE≌△CFE ∴AD=CF ∵D为AB中点 ∴AD=BD ∴BD=CF ∴BCFD是平行四边形 ∴DF∥BC且DF=BC ∴DE=BC/2 ∴三角形的中位线定理成立. 法二:利用相似证 ∵D,E分别是AB,AC两边中点 ∴AD=AB/2 AE=AC/2 ∴AD/AE=AB/AC 又∵∠A=∠A ∴△ADE≌△ABC ∴DE/BC=AD/AB=1/2 ∴∠ADE=∠ABC ∴DF∥BC且DE=BC/2 法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为 :根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半 三角形中位线定理的逆定理逆定理一: 如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。 逆定理二: 如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2 【证法①】 取AC中点G ,联结DG 则DG是三角形ABC的中位线 ∴DG∥BC 又∵DE∥BC ∴DG和DE重合(过直线外一点,有且只有一条直线与已知直线重合) (2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半。 中位线是三角形与梯形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用。 性质梯形的中位线平行于两底,并且等于两底和的一半 .梯形 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 证明四边形ABCD是梯形,AD∥BC,E、F分别是AB、CD边上的中点,求证:EF∥AD,且EF=(AD+BC)/2 证明: 连接AF并延长交BC的延长线于G。 ∵AD∥BC ∴∠ADF=∠GCF ∵F是CD的中点 ∴DF=FC ∵∠AFD与∠CFG是对顶角 ∴∠AFD=∠CFG ∴△ADF≌△CGF(ASA) ∴AF=FG,AD=CG ∴F是AG的中点 ∵E是AB的中点 ∴EF是△ABG的中位线 ∴EF∥BG,EF=BG/2=(BC+CG)/2 ∴EF=(AD+BC)/2 ∵AD∥BC ∴EF∥AD∥BC 3.扩展三角形三条中位线所构成的三角形是原三角形的相似形。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。