请输入您要查询的百科知识:

 

词条 张芷芬
释义

张芷芬,数学家。从事常微分方程定性理论和拓扑动力系统理论的研究,是国内这一领域的开拓者之一。1951年毕业于北京大学数学系。1957年获苏联莫斯科大学数学力学系研究生院物理数学副博士学位。历任北京大学副教授、教授、数学系副主任,北京市数学学会副理事长。曾获全国三八红旗手称号。专于微分方程的定性理论和动力系统研究。对李奈方程极限环的存在性和唯n性问题有较深造诣。合著《微分方程定性理论》。

中文名:张芷芬

国籍:中国

民族:汉族

出生地:慈溪县海屋张家村

出生日期:1927年1月8日

职业:数学家

毕业院校:北京大学

代表作品:《微分方程定性理论》

人物介绍

张芷芬1927年1月8日出生在浙东沿海一个偏僻的小乡村——海屋张家村,该村隶属于慈溪县。若干年前这里曾是滩涂,村庄也因此得名。父亲张如海,曾是烟纸店店员,识字不多。母亲邱澄书,念过一二年私塾,靠她自己勤奋好学,能背诵一些古诗词,且能算能写,在当地算是一个很有文化的人。张芷芬小学毕业后,母亲不顾亲友们的非议,送她到数百里外的嵊县读中学(当时宁波已沦陷,宁波中学迁到嵊县),这在当时当地实在是难以想象的事。

一年后嵊县各村镇相继沦陷,学校一次又一次地迁移,最后被迫宣布解散。张芷芬和一些同学不顾日机的轰炸徒步走到福建,后又辗转到江西等地,靠战地流亡学生助学金和奖学金念完中学。1945年抗日战争胜利结束,1946年她高中毕业后回到上海父亲处逗留,在那里考入北京大学先修班,一年后转入本科。

在这一阶段对她影响最深的是她的母亲,还有中学里的一批好老师。抗战时期物质条件虽很差,但中学师资条件却很好,如宁波中学、福州高中,还有江西赣州以蒋经国为校长的正气中学,大多数教师具有大学学历。正是这样一批好老师培育她勤奋读书,使她初步树立了懵懂的人生追求。极其艰苦的物质环境也磨练了她的意志。特别是那满目疮痍,受尽躏辱的民族的苦难形象深深地铭刻在她的心底,使她终身难以忘怀,一直激励着她的爱国、报国热情。

1951年张芷芬毕业于北京大学数学系并留校工作。1954年到1957年由国家选派到前苏联莫斯科大学力学数学系攻读研究生,并获得副博士学位。在导师V.V.涅梅茨基(Nemytskii)教授指导下,她有了做研究工作全过程的体验,增强了从事科研工作的信心和能力。

20世纪五六十年代的莫斯科大学被公认为国际数学的重要中心之一,在那里聚集着一大批杰出的数学家,如当时力学数学系主任是A.X.柯尔莫戈洛夫(Колмогоpов),他们亲自授课,张芷芬有幸聆听他们的教诲。

在这高水平的学者和专家云集的地方学习,大大地拓宽了张芷芬的眼界,对什么是科学发展的前沿和重要问题有了一点感性认识。这使她在今后的人生征途中始终不敢有所懈怠;在她头脑中的天平永远是国家给予她的总远远地超过她为国家做的。

自1957年回国后张芷芬一直在北京大学数学系工作。在其中的前20年间,她担负着繁重的行政工作和社会工作,但仍始终坚持科研,没有脱离教学工作,还把节假日和大部分业余时间用在业务学习上。当然,这与她丈夫章燕申(清华大学精密仪器系教授,1956年获莫斯科包曼技术大学副博士学位)多年来的支持是分不开的:他差不多始终担负着一半的家务劳动。

“文化大革命”结束后,国家的科教政策日趋稳定完善。为了尽快夺回失去的时间,张芷芬没有在原有方向上驾轻就熟,而是与学生和同事们一起,以原有方向为基础向研究前沿靠拢,开始关心向量场分岔理论等。那些年来他们积极地参加国际交流,出访美国、日本和欧洲的许多国家,张芷芬还10余次应邀在国际会议上作了大会报告。

1988年6月,应邀访问波兰科学院的巴拿赫(Banach)中心,参加了那里的动力系统会议,作了关于拓扑动力系统的极小集的报告;

1991年7月,在英国巴斯(Bath)大学召开的关于非线性系统的国际会议上,作了以“一类退化平衡点的临界同宿轨的开折”为题的50分钟大会报告(与李伟固、李承治合作);

1996年6月,在杭州召开的中美双边微分方程及其应用国际会议上,作了以“希尔伯特(Hilbert)第16问题的发展近况”为题的1小时大会报告;

1997年10月,在法国马赛鲁明尼(Luminy)召开的关于多项式向量场的国际会议上,作了“关于余维3的初等环和组合环的环性”为题的50分钟大会报告(与赵丽琴、李伟固合作);

2001年11月,参加了在日本京都大学召开的“泛函方程动力学及其相关问题”会议,作了“关于无穷小希尔伯特第16问题”的大会报告。

人物年表

1927年1月8日 出生在浙江省慈溪悬。

1946年11月-1947年6月 北京大学先修班学习。

1947年9月-1951年6月 北京大学数学系学习,毕业。

1951年6月-1952年3月 北京大学数学系助教。

1952年3月-1953年3月 北京俄文专修学校学习。

1953年3月-1954年9月 国家计划委员会工作。

1954年10月-1957年11月 莫斯科大学力学数学系研究生毕业,获副博士学位。

1957年11月-1960年 北京大学力学数学系教员。

1960-1966年 北京大学力学数学系副教授,北京大学力学数学系副系主任。

1983年至今 北京大学力学数学系教授、博士生导师。

学术贡献

关于李纳方程极限环的个数

1.关于李纳方程极限环的唯一性

关于极限环的唯一性问题要比存在性问题难些,直到20世纪四五十年代才有N.莱文森(Levinson),G.桑索内(Sansone),R.孔蒂(Conti),J.I.马赛拉(Massera)等人的惟一性定理,而他们得到的充分条件都加在函数g(x),f(x),或F(x)的对称性或它们零点的对称性上。1957年张芷芬在副博士论文中第一次指出,阻尼函数的凹凸性是影响极限环唯一性的更本质的性质,实际上f(x)的星形性就能保证唯一性。她在1958年和1986年发表的文章中,对广义李纳系统在常规条件下,证明了若导函数,(0,+

∞)),则(4)的极限环唯一。这一结果一直被国内外同行广泛地引用。如见秦元勋的“微分方程所定义的积分曲线”(下册)(1959),叶彦谦的“极限环论”(1984),桑索内和孔蒂的书“非线性微分方程”(“Non-linear Differential Equations”)(1964),L.佩柯(Perko)的书“微分方程和动力系统”(“Differential Equations and Dynamical Systems”)(1993)。在二次多项式系统和生物数学等领域中的极限环唯一性问题,很多都是利用这个唯一性定理证明的。 1982年张芷芬的学生和同事曾宪武对系统(1)的唯一性定理作了本质性推进,在阻尼函数没有对称性和凸凹性的限制下,他对发散量积分用分段估算、相互补偿的办法作了更精细的估计。接着张芷芬和曾宪武、高素志又将此结果从系统(1)推广到系统(4)。他们总结了二三十年来的相关结果,经深入研究,发表了论文:“On the uniqueness of the limit cycle of the generalized Lienard equation”,它不是一篇简单的综合文章,文中最前面的11条引理揭示了方程(4)的发散量积分的最本质特性,每个定理后面的推论都指出了定理的要点和如何应用,已有的很多唯一性都是本文推论的特例。

2.关于一类周期阻尼李纳方程极限环的惟n性

1980年张芷芬第一个证明方程

对一切μ≠0,在相空间(x,)的带域||≤(n+1)π上恰好有n个极限环这个有多年历史的猜想(n=0,1,2,…)。此结果引起国内外同行们的关注。不但因为它是多年来未解决的猜想,还因为它与希尔伯特第16问题相关。已知解析系统在有界区域内极限环个数有限。方程(5)是解析系统,它却有无穷多极限环在无穷远密集,它用实例揭示解析性只能保证极限环个数的局部有限性,却不能保证全局有限性,只有多项式系统的极限环个数才在全平面有限。

关于拓扑动力系统

1.非齐性极小集合

完备度量空间上定义的几乎周期极小集合是紧致的拓扑群,群的运算能一致地扩充到闭包,因而是齐性的,即每一点的维数相同。E.E.弗洛伊德(Floyd)在R2的正方形的闭子集上所定义的离散动力系统,它是非齐性的,它有0维和1维点。张芷芬在一个n维正方形的闭子集上定义的离散动力系统,它有0,1,…,n-1维点。仿此,可定义一n维紧致非齐性极小集合,它有且仅有0,k1,k2,…,kj维点,其中0≤k1≤k2≤…≤kj≤n-1。由此可见几乎周期极小集和极小集的差异。G.D.伯克霍夫(Birkhoff)猜想,在n维流形上定义的极小集合都是齐性的。A.马尔可夫(Markov)证明此猜想对有限维连续流极小集合是对的。

2.安东尼(Antonie)项链

20世纪50年代W.H.戈特沙尔克(Gottschalk)提出,能否定义一个以安东尼项链A为极小集合的拓扑动力系统。1982 年张芷芬在“中国科学”上发表的文章中定义了R3到自身的拓扑映射Φ,使得A是(R3,Φ)的一个完全不连通的紧致完全的不变集(它与康托(Cantor)集等价),而R3/A不简单连通(项链之名由此而来),A恰发是离散动力系统(R3,Φ)的极小集,从而第一次肯定地回答了戈特沙尔克的问题。进而,A还是(R3,Φ)的几乎周期极小集,故它是齐性的,每一点的维数为0,于是,A不但是紧致拓扑群,还是单纯拓扑群,即它有一稠密的循环子群。A的动力学异常简单,但A的几何却并不简单,A显然不是有限个流形的并。

关于向量场分岔理论

张芷芬从20世纪80年代起开始关心向量场的分岔理论,主要是哈密顿向量场的分岔问题,即系统(2)的极限环个数问题,也称弱希尔伯特第16问题。

设H=h0和H=h1分别对应哈密顿向量场dH=0的奇点和奇闭轨。设闭轨Гh是H-1(h)(h0<h<h1)的紧分支。设Гh对扰动系统(2)的庞加莱映射为Pε(h),则位移函数

Pε=△Pε(h)-h=εM1+o(ε)

是阿贝尔(Abel)积分,也称一阶梅利尼柯夫(Melnikov)函数。

扰动系统(2)有闭轨的充要条件是位移函数△Pε=0,M1(h)是位移函数对ε而言的一阶近似,故它在(h0,h1)上的孤立零点个数(计重次)N(m,n)与系统(2)的极限环个数紧密相关,其中degH=m+1,max(degP,degQ)=n。

1.对m=n=2,给出N(m,n)的准确估值

当m=2,dH=0共有5种通有情形和8种非通有情形。已证得N(2,2)=2或3。其中8种非通有情形由I.D.伊利耶夫(Iliev)、李承治和赵育林等解决。5种通有情形之一由张芷芬和李承治解决。最近李承治和他的学生陈风德等在实域中给5种通有情形一种统一的证明。

2.关于庞特里亚金定理的推广

1934年庞特里亚金证明,当系统(2)的右侧充分光滑,且M1(h*)=0.M(h*)≠0,则系统(2)有唯一极限环Lh。它连续依赖于ε,Lh→Гh*,当ε→0;且Lh稳定(不稳定),当εM1(h*)<(>)0。张芷芬在副博士论文中,在同样假设下证明,当(h*)=0(k=0,1,2,…,n-1),而(h*)≠0,则存在充分小ε0>0,δ0>0。系统(2)至多有n个极限环在δ(Гh*)=U Гh中,当|ε|ε0。此结果被《苏联数学四十年》所引用。

3.多角环的环性

多角环分两大类:无穷余维和有限k余维。

对第一类环,张芷芬和她的学生李宝毅在一定非退化条件下证得S(2)的环性为2等。对余维k的环,已知它的环性E(k)≤k,当k=1,2;E(k)>k,当k≥4。张的博士生赵丽琴,在论文中圆满地回答了此问题,她证得E(k)≤k,当且仅当k=1,2,3。

4.闭曲面上的“兰天灾变”,一类全局分岔

J.帕里斯(Palis)等学者于1975年在Lecture Notes Math.468卷的一篇文章中提出了动力系统中未解决的五十个问题,其中第三十七问题是:在单参数通有向量场族中能否发生“兰天灾变”,即在C∞紧致流形M上,定义连续向量场族Xμ(μ∈R),若存在连续映射L:(μ0-ε,μ0)→[Xμ的闭轨L(μ)],当μ→μ0,L(μ)的周期T(μ)→∞,但L(μ)不趋于Xμ的任何奇点,这时叫“兰天灾变”,即闭轨L(μ)由于周期T(μ)趋于无穷而突然消失,但这不是由于它靠近奇点引起的。李伟固和张芷芬在闭曲面上较彻底地解决了此问题。他们证明,除了S2和P2外,“兰天灾变”可在任何闭曲面上发生,但对单参数通有族,它只能在克莱因(Klein)瓶K2上发生,且就是通过一种特定途径发生。

5.可积非哈密尔顿系统

关于弱希尔伯特第十六问题,目前遗留下来的问题很多也很难,其中值得一提的是可积非哈密尔顿系统。由于积分因子一般而言很不规正。阿贝尔积分号下乘上这样的因子便寸步难行,已有的工作屈指可数。但若可积系统具有理中心,即围绕中心的是有理代数闭曲线,则由达布定量,系统的积分因子是有理函数。对于中心附近围绕的是低次代数闭曲线的情形,张芷芬和她的同事们证明了对一切系统,当中心附近围绕二次代数曲线时,则N(n)=O(n)。对一切二次多项式系统,当中心附近是三次代数曲线,或四次代数曲线时,也有N(n)=O(n)。这些工作可算是对这艰难问题迈出了一步。

在以上3个科研方向上,张芷芬和学生以及同事在国内外杂志上合作发表了50余篇论文。“李纳方程极限环个数问题和拓扑动力系统的几个例子”获国家教委1988年科技进步二等奖。

教学和研究生培养

自1957年以来,在教书育人的工作中,张芷芬的主要精力放在高年级大学生和研究生的培养上。她认识到,要为国家培养高质量的人才,使他们在今后的岗位上继续奋进,逐步站在学科发展的前沿,是非常艰巨的任务。

自20世纪60年代起,张芷芬先后几次为高年级大学生和研究生开设过微分方程定性理论专门化课,后来以此讲义为基础,她与丁同仁、黄文灶、董镇喜合作写成教材,于1985年由科学出版社作为现代数学基础丛书出版,1997年重印,1992年由美国数学会出版社译成英文作为数学专著译丛第101卷出版发行。

与此同时,张芷芬和丁同仁、黄文灶等合作为高年级学生和青年教师开设拓扑动力系统讨论班,基本教材是张芷芬的导师涅梅茨基和V.V.斯捷潘诺夫(Stepanov)的《定性理论》一书的有关章节和他的两篇综合文章,培养了两届六年制大学生,共完成毕业论文十余篇,有的达到了硕士论文水平。这些论文加上教师完成的论文,共回答了涅梅茨基综合文章中所列举的未解决问题的一半。

自1981年起的十余年间,张芷芬与李承治、李伟固等从未间断地组织了有关向量场分岔理论和动力系统方面的讨论班,系统地阅读一些基本文献和重要的新结果。

讨论班的学术活动大大地拓宽了师生们的眼界。关于研究生培养,除了学生来源等问题外,张芷芬认识到对于教师来说,首要的是选题,要尽可能地根据学生实际情况,又要让论文方向更接近前沿,使他们毕业后值得继续探索。其次是要给他们从阅读文献,提出问题到解决问题的全过程的培养。每篇论文都应有攻坚之处,要让学生自己去攻克,使他们经过这番磨练,提高能力,增强信心,毕业后仍有胆识去独立地开展研究工作。她领导的讨论班也在研究生培养中起着重要作用。这一期间,张芷芬共培养硕士生8名,博士生11名。今天他们大都成为有关院所的专家、教授,其中有李承治、郑志明、李伟固、张伟年、李翠萍、肖冬梅、曹永罗、齐东文、王兰宇、赵丽琴、赵育林、李宝毅、汪天喜等。

主要论著

1 Zhifen Zhang. On the uniqueness of limit cycles of certain equations of nonlinear oscillations. Dokl. Akad. Nauk SSSR, 1958, 119,659—662

2 Zhang Zhifen, Ding Tongren, Huang Wenzao. Answer to some questions on topological dynamical systems posed by Nemytskii and the others. Kexue Tongbao, 1980, 25 (11), 895—899

3 Zhang Zhifen. Theorem of existence of exact n limit cycles in |χ| ≤(n+1) π for the differential equation +μsin +χ= 0. Scientia Sinica,1980, 23 (12): 1502—1510

4 Zhang Zhifen. On the existence of exact two limit cycles of Lienard equation. Acta Math. Sinica, 1981, 24 (5): 710—716

5 Zhang Zhifen. An example of compact nonhomogeneous minimal set.Acta Math. Sinica, 1982, 25 (3): 354—364

6 Zhang Zhifen. A topological dynamical system in R3 with antonie's necklace as a minimal set. Scientia Sinica, 1982, 25 (9) : 932—941

7 张芷芬,丁同仁,黄文灶,董镇喜.微分方程定性理论.北京:科学出版社,1985;1987年重印

8 Li Weigu, Zhang Zhifen. The “Blue sky Catastrophe” on closed surfaces. Proceeding of the International Conference “Dynamical System and Related Topics”. Nagoya, Japan, World Scientific, 1990. 316—332

9 Zhang Zhifen, Ding Tongren, Huang Wenzao, Dong Zhenxi. Qualitative theory of differential equations. Translations of Mathematical Monographs, AMS, 1992, Vol. 101

10 Zeng Xianwu, Zhang Zhifen, Gao Suzhi. On the uniqueness of the limitcycle of the generalized Lienard equation. Bull London Math. Soc. ,1994, 26: 213—247

11 Li Baoyi, Zhang Zhifen. A note on a result of G. S. Petrov about the weakened 16th Hilbert problem. J. Math. Anal. Appl. , 1995, 190 (2): 489—516

12 Dumortier Freddy, Li Chengzhi, Zhang Zhifen. Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops. J. Differential equations, 1997, 139 (1): 146—193

13 Li Baoyi, Zhang Zhifen. Bifurcation phenomenon of a class of planar codimension 3 polycycle S(2) with two saddles resonating. Science China (Ser. A), 1997, 40 (12): 1259—1271

14 张芷芬,李承治,郑志明,李伟固.向量场的分岔理论基础.北京:高等教育出版社,1997

15 Zhao Liqin, Li Weigu, Zhang Zhifen. Cyclicity of elementary polycycles and ensembles with codimension 3 degeneration. Chinese Sci.Bull., 1998, 43 (22): 1849—1864

16 Zhao Yulin, Zhang Zhifen. Linear estimate of the number of zeros of Abelian integrals for a kind of quartic Hemiltonians. J. Differential Equations, 1999, 155 (1): 73—88

17 Li Chengzhi, Li Weigu, Llibre Jaume, Zhang Zhifen. Linear estimate for the number of zeros of Abelian integrals for quadratic isochronous centers. Nonlinearity, 2000, 13: 1775—1800

18 Li Chengzhi, Li Weigu. Llibre Jaume, Zhang Zhifen. Linear estimation for the number of zeros of Abelian integrals for some cubic isochronous centers. J. Differential Equations, 2002, 180: 307—333

19 Gasull Armengol, Li Weigu, Llibre Jaume, Zhang Zhifen. Chebyshev property of complete elliptic integrals and its application to abelian integrals. Pacific Journal of Mathematics. 2002, 202 (2): 341—361

20 Zhao Yulin, Li Weigu, Li Chengzhi, Zhang Zhifen. Linear estimate for the number of zeros of Abelian integrals for quadratic centers having almost all their orbits formed by cubics. Science China (Ser. A) , 2002,45 (8): 964—974

21 Li Weigu, Zhao Yulin, Li Chengzhi, Zhang Zhifen. Abelian integrals for quadratic centers having almost all their orbits formed by quartics.Nonlinearity, 2002, 15: 863—885

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/16 12:02:30