词条 | 章聚乐 |
释义 | 人物履历基本情况: 男,汉族 ,中国共产党党员,安徽师范大学数学计算机科学学院教授,基础数学研究生导师,1937年9月生,安徽省枞阳县人,1963年7月毕业于皖南大学(今安徽师范大学)数学系。曾任安徽师范大学数学系代数教研室副主任,代数研究室主任,数学系副主任,德国《数学文摘》杂志社评论员,安徽师范大学教学督导员,《安徽师大学报》编委。享受政府特殊津贴,获安徽省1993年科技进步奖,获曾宪梓教育基金会1997年高等师范院校教师奖。 自工作以来,一直从事与代数 学相关课程的教学和《环论与同调代数》的研究工作。1979年开始参与培养基础数学研究生,1986年开始单独培养基础数学研究生。先后讲授大学本科生的基础课和选修课有《高等代数》,《近世代数》,《数论》,《群论》,《环与域》和《代数学》,研究生的基础课和专业课有《基础代数》,《除环上线性代数》,《环论》,《李代数》,《交换代数》,《多重线性代数》,《模论》,《同调代数》,《非奇异环与模》和《Von Neumann 正则环论》等十多门课程。教学认真负责,注意为人师表,教书育人,治学严谨,深受学生一致欢迎与尊敬,深得领导与同事们的高度评价与称赞,1982年获安徽师范大学教学质量优秀奖, 为国家培养了十多名代数学研究生和一批数学专业的优秀人才。 成就及荣誉多年来,在《同调代数》,《Von Neumann 正则环论》和《矩阵的广义逆》等理论方面有系统深入研究,其中《 Von Neumann 正则环及其推广》的研究被公认为居国内领先地位。先后在《Comm. in Algebra》(U.S.A.)、《Comm. Math.》(Poland)、《Internat. J. Math. and Math.Sci.》(U.S.A.)、《Algebra Collequium》、《Kobe J. Math.》(Japan)、《Southeast Asian Bull. Math.》、《Acta Math. Vietnamica》、《科学通报》、《数学年刊》、《数学进展》、《数学研究与评论》、《东北数学》、《数学杂志》、《数学季刊》等国内外重要杂志上发表论文40余篇, 主要有: 1. Von Neumann Regularity of SF-Rings (with Du Xianneng), Algebra,21(7)(1993),2445-2451, M R94e:16021, Zbl.791(1994):16009. 2. 每个极大左理想是理想的完全幂等环,科学 通报,36(20)(1991),1529-1531, Zbl.762 (1993):16005. Fully Idempotent Rings Whose Every Maximal Left Ideal Is an Ideal,Chinese Science Bulletin,37(13)(1992),1065-1068. 3. Generalizations of Principal Injectivity (with Wu Jun),Algebra Colloquium, 6(3)(1999),277-282, 4. Von Neumann 正则环和SF-环(与杜先能合作),数学年刊,14A(1)(1993),6-10, MR94c:16012, Zbl.801(1995):16007. On Von Neumann Regular Rings and SF-Rings(with Du Xianneng),Chinese J.of Contemporary Mathematics,14(1)(1993),9-13, MR94j:16016. 5. Hereditary Rings Containing an Injective Maximal Left Ideal (with Du Xianneng),Algebra,21(12)(1993),4473-4479, MR94j:16017, Zbl.803(1995):16010. 6. 每个本质左理想是理想的MERT环(与胡卫群合作),数学年刊,15A(2)(1994),204-207, Zbl.808(1995):16015. 7. On a Question Concerning WCT Rings,Commentationes Mathematicae (Poland), 34 (1994),253-257, MR96c:16031, Zbl.827(1996):16002. 8. MELT右V-环是Von Neumann正则环(与杜先能合作),科学通报,39(17)(1994),1629,Zbl.839(1996):16010. MELT Right V-Rings Are Von Neumann Regular (with Du Xianneng),Chinese Science Bulletin,40(11)(1995),967-968. 9. Semiprime SF-Rings Whose Essential Left Ideals Are Two-Sided (with Du Xianneng) Internat.J.Math.& Math.Sci.(U.S.A.),17(3)(1994),617-618. 10. SF-Rings Whose Maximal Essential Left Ideals Are Ideals, Advances in Mathematics(数学进展),23(3)(1994),257-262. 11. Some Remarks on Von Neumann Regular Rings (with Du Xianneng),Kobe j. Math.(Japan),9(2)(1992),151-157, MR94a:16016, Zbl.780(1994):16008. 12. P-Injective Rings and Von Neumann Regular Rings, Northeastern Math.J.(东北数学),7(3)(1991),326-331, MR93e:16020, Zbl.765(1993):16005. 13. Left SF-Rings Whose Complement Left Ideals Are Ideals (with Du Xianneng),Acta Math.Vietnamica,17(1)(1992),157-159, MR93j:16008. 14. P-Injectivity and Artinian Semisimple Rings,J.of Math.Research and Exposition (数学研究与评论),11(4)(1991),578-585, MR92I:16008, Zbl.790 (1994):16008. 15. A Note Von Neumann Regular Rings, Southeast Asian Bulletin of Math.,22(2) (1998),231-235. 16. Characterizations of Strongly Regular Rings, Northeast. Math.J.(东北数学),10(3)(1994),359-364, MR96a:16007, Zbl.822(1995):16002. 17. P-内射环和半素环(与陈建龙合作),数学杂志,11(1)(1991),29-34. 18. Endomorphism Rings of Generalized Quasi-Injective Modules,J.of Math. Research and Exposition(数学研究与评论),10(4)(1991),585-588, Zbl.793 (1992):1602 0. 19. 关于SF-环的几点注记, 数学杂志,14(2)(1994),197-202. 20. On fpp-Rings (with Du Xianneng),Chinese Quarterly J.of Math.(数学季刊),8(1)(1993),77-80. 21. P-内射环的某些研究 (与陈建龙合作),数学杂志,12(2)(1992),141-145, Zbl.762 (1993):16002. 22. Strongly Regular Rings and SF-Rings(with Lu Rongdian),Northeast.Math.J.(东北数学),14(1)(1998),61-68. 23. 主左理想由若干个幂等元生成的环(与吴贵花合作),数学研究与评论,16(2)(1996),269-274, MR97c:16013. 24. Note on "Some New Results of P-Injective Rings" and "Regular Rings Are Very Regular" (with Xue Weimin), J.of Math.Research and Exposition (数学研究与评论),11(3)(1991),474-476, Zbl.780(1994):16007. 25. 关于McCoy定理(与杜先能合作),数学研究与评论,16(1)(1996),145-146, Zbl.849 (1996),16002. 26. Some Remarks on SF-Rings (with Du Xia nneng),J.of Anhui Normal University (Natural Science),15(3)(1992),1-6. 27. 环上矩阵的Drazin逆(与杜先能合作),安徽师大学报 (自然科学版),19(4)(1996),305-308. 28. A Computational Method of Matrices, J.of Anhui Normal University (Natural Science),1(2)(1974),45-60. 29. 结合环的可换性定理,安徽师大学报(自然科学版),7(2)(1984),14-18. 30. V-Rings Whose Essential Left Ideals Are Two-Sided (with Du Xianneng),J.Anhui Normal University (Natural Science),17(2)(1994),15-17, Zbl.864(1997):16006. 31. Von Neumann正则环( I ),安徽师大学报(自然科学版),13(3)(1990),13-18. 32. Von Neumann Regular Rings and P-V-Rings (with Wu Guihua),J.Anhui Normal University(Natural Science),17(4)(1994),1-5, Zbl.868(1997):16008. 33. 关于非奇异环, 安徽师大学报 (自然科学版),9(4)(1986),6-11. 34. Self Injective Rings and Regular Rings, Collected papers of 70th anniversary of the founding of Anhui Normal University,167-172, Anhui People's Press,1998. 35. P-内射环的几个新结果(与陈建龙合 作),安徽师大学报(自然科学版),12 (2) (1989),6-11. 36. P-Injective Rings, Communications on Algebra (Anhui Math.Soc.),2(1988),31-40. 37. 半素子模的判别定理(与杜先能合作),安徽师大学报(自然科学版),12(4)(1989),9-13. 38. Right Semi-duo ∏-Regular Rings (with Wu Guihua),J.of Anhui Normal University (Natural Science),19(1)(1996),1-6. 39. 关于正则环的几点注记(与吴贵花合作),安徽师大学报(自然科学版),19(3)(1996),203-206. 40. 具诣零单边理想链条件的环,安徽师大学报(自然科学版),8(2)(1985) 6-10. 41. Ostrowski定理的推广与应用(与张晓 东合作),安徽师大学报(自然科学版),20(2) (1997),115-118. 在上面的部分论文中,解决了在国外多种重要数学杂志上所提出的有关《环论》与《同调代数》的18个公开问题 ,它们是: (1)If R is a left hereditary ring containing an injective maximal left ideal, is R semi-simple Artinian ? (cf. Algebra,20(3)(1992),749-759) (2) Is R sem-simple Artinian if a ring R contains an injective maximal left ideal and every maximal left ideal of R is projective ? (cf. Arch. Math.,28(1992),215-220) (3) If every non-zero complement left ideal of a ring R contains a non-zero ideal and every non-zero ideal of R contains a non-zero complement left ideal, is R a left WCT ring ? (cf. Ann. Soc. Math. Poland,30(1991),491-500) (4) Is R regular if R is a MELT ring and every simple right R-module is flat ? (cf. Comm. in Algebra,20(3)(1992),749-759) (5) Is R self-injective regular if R is an ELT right CE-injective ring whose simple right R-modules are flat ? (cf. Ricerche di Mathematica,33(2)(1984),147-157) (6) Is R regular if R is an ELT fully right idempotent ring ? (cf. Comm. Korean Math. Soc.8(3)(1993),345-349) (7) Is R regular if every left (and right) R-module is GP-injective ? (cf. Riv.Mat.Univ.Parma,22(5)(1996),183-188) (8) Is a MELT right V-ring R von Neumann regular ? (cf. Ricerche di Mathematica,33(2)(1984),147-157) (9) Is a left V ring whose essential left ideals are two-sided regular ? (cf. Math.J.Okayama Univ.,20(1978),123-129) (10) Is R von Neumann regular if R is a MELT fully idempotent ring ? (cf. Portugaliae Math.44(1)(1987),101-112) (11) Is R von Neumann regular if every left (and right) R-module is YJ-injective ? (cf. Riv.Mat.Univ.Parma,22(5)(1996),183-188) (12) Is R strongly regular if every ideal of a ring R is idempotent and every maximal left ideal of R is an ideal ? (cf. Bull.Soc.Math.Belgium,41(1989),129-138) (13) Is R regular if R is a MERT ring and R is fully left idempotent ? (cf. Ann.Univ.Ferrara,31(1985),49-61) (14) Is R strongly regular if every complement left ideal of a ring R is an ideal and every simple R-module is flat ? (cf. Acta Math. Vietnamica,13(2)(1988),71-79) (15) If R is an ERT ring which is a one-sided V-ring, then is R a left and right V-ring ? (cf. Kyungpook Math.J.,32(2)(1992),219-228) (16) Is R regular if R a semiprime ELT ring and every simple right R-module is flat ? (cf. Math.J.Okayama Univ.,22(1980),151-160) (17) Is R regular if R is a MERT ring and every simple right R-module is flat ? (cf. Ann.Univ.Ferrara,31(1985),49-61) (18) Is R of bounded index if R is an ERT regular ring ? (cf. Kyungpook Math.J.,32(2)(1992),219-228) 社会评价在圆满解决这些数学公开问题的一系列论文中,以及与这些这些数学公开问题有关的论文中,大部分研究成果具国际先进水平,得到了国内外同行专家的普遍关注与好评,多国学者和多位国内同行纷纷来信要求提供所发表的论文和相关资料。所发表论文中 很多都被美国《数学评论》、德国《数学文摘》全面摘评,同时被国内外同行专家广泛引用。先后两次领导《Von Neumann 正则环论及其推广》等省教委下达的科研项目的研究,取得了一系列成果,1993年获安徽省科技进步奖。事迹被收入《世界名人录》、《当代中国科学家传略》、《中国高等教育专家名典》、《 中国当代知名学者辞典》、《当代中国科学家与发明家大辞典》、《中国专家人才库》、《安徽师大英才录》和《世界数学家人名录》等二十余种大型辞典。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。