请输入您要查询的百科知识:

 

词条 圆幂
释义

假设平面上有一点P,有一圆O,其半径为R,则OP^2-R^2即为P点到圆O的幂;

可见圆外的点对圆的幂为正,圆内为负,圆上为0;

圆幂的由来

过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。则PA·PB=PC·PD。若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (要加绝对值,原因见下)为定值。这个值称为点P到圆O的幂。(事实上所有的过P点与圆相交的直线都满足这个值)

若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2|

故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差,而过这一点引任意直线交圆于A、B,那么PA·PB等于圆幂的绝对值。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/7 3:26:47