词条 | 有机酸 |
释义 | 有机酸是指一些具有酸性的有机化合物。最常见的有机酸是羧酸,其酸性源于羧基 (-COOH)。磺酸 (-SO3H)、亚磺酸(RSOOH)、硫羧酸(RCOSH)等也属于有机酸。有机酸可与醇反应生成酯。 羧酸(羧酸的分类 羧酸的命名 羧酸的结构 羧酸的物理性质 羧酸的化学性质 甲酸HCOOH 乙酸CH3-COOH 苯甲酸C6H5-COOH 乙二酸HOOC-COOH 丁二酸HOOC-CH2-CH2-COOH) 简介有机酸是指一些具有酸性的有机化合物。最常见的有机酸是羧酸,其酸性源于羧基 (-COOH)。磺酸 (-SO3H)、亚磺酸(RSOOH)、硫羧酸(RCOSH)等也属于有机酸。 有机酸可与醇反应生成酯。羧基是羧酸的官能团,除甲酸(H一COOH)外,羧酸可看做是羟分子中的氢原子被羧基取代后的衍生物。可用通式(Ar)R-COOH表示。羧酸在自然界中常以游离状态或以盐、酯的形式广泛存在。羧酸分子中羟基上的氢原子被其他原子或原子团取代的衍生物叫取代羧酸。重要的取代羧酸有卤代酸、羟基酸、酮酸和氨基酸等。这些化合物中的一部分参与动植物代谢的生命过羟,有些是代谢的中间产物,有些具有显著的生物活性,能防病、治病,有些是有机合成、工农业生产和医药工业原料。 有机酸类 (Organic acids)是分子结构中含有羧基(一COOH)的化合物。在中草药的叶、根、特别是果实中广泛分布,如乌梅、五味子,覆盆子等。常见的植物中的有机酸有脂肪族的一元、二元、多元羧酸如酒石酸、草酸、苹果酸、枸椽酸、抗坏血酸(即维生素C)等,亦有芳香族有机酸如苯甲酸、水杨酸、咖啡酸(Caffelc acid)等。除少数以游离状态存在外,一般都与钾、钠、钙等结合成盐,有些与生物碱类结合成盐。脂肪酸多与甘油结合成酯或与高级醇结合成蜡。有的有机酸是挥发油与树脂的组成成分。 分布在中草药的叶、根、特别是果实中广泛分布,如乌梅、五味子,覆盆子等。常见的植物中的有机酸有脂肪族的一元、二元、多元羧酸如酒石酸、草酸、苹果酸、枸椽酸、抗坏血酸(即维生素C)等,亦有芳香族有机酸如苯甲酸、水杨酸、咖啡酸(Caffelc acid)等。除少数以游离状态存在外,一般都与钾、钠、钙等结合成盐,有些与生物碱类结合成盐。脂肪酸多与甘油结合成酯或与高级醇结合成蜡。有的有机酸是挥发油与树脂的组成成分。 特点有机酸多溶于水或乙醇呈显著的酸性反应,难溶于其他有机溶剂。有挥发性或无。在有机酸的水溶液中加入氯化钙或醋酸铅或氢氧化钡溶液时,能生成水不溶的钙盐、铅盐或钡盐的沉淀。如需自中草药提取液中除去有机酸常可用这些方法。 价值一般认为脂肪族有机酸无特殊生物活性,但有些有机酸如酒石酸、枸椽酸作药用。又报告认为苹果酸、枸椽酸、酒石酸、抗坏血酸等综合作用于中枢神经。有些特殊的酸是某些中草药的有效成分,如土槿皮中的土槿皮酸有抗真菌作用。咖啡酸的衍生物有一定的生物活性,如绿原酸(Chlorogenic acid)为许多中草药的有效成分。有抗菌、利胆、升高白血球等作用。 (图为抗炎有机酸类) 作用有机酸除了具有抗生素作用外,还具有其它几种作用,包括降低消化物pH和增加胰腺分泌。 有几个国家已撤消了在动物饲料中使用非治疗性抗生素的主张,饲喂低剂量促生长剂的行为在世界范围内也在迅速消失。那些想在无药市场进行销售活动的生产者正在寻求饲料抗生素的非药物性替代物。 为了弄清什么是合适的替代物,有必要了解抗生素的作用方式。多数数据表明,抗生素的促生长作用可以完全归于它们的抗菌活性和由此带来的生理反应。因此,寻找替代物着重注意具有抗菌活性的天然分子物质。 最有效的候选替代物是有机酸,可以是单项酸,也可以是多项酸的混合物。这些有机酸长期用于断奶仔猪日粮中,对仔猪的健康和生长都有积极作用。本报告将比较抗生素和有机酸的作用,并描述一种新的有机酸,即2-羟基-4-(甲硫基)丁酸(HMB) 的活性。 HMB是一种蛋氨酸补充源,一般用于猪、禽及反刍动物饲料中。HMB实际是一种天然的L-蛋氨酸前体,饲喂时,从化学上是一种一元羧酸,即有机酸,直至到动物组织后被酶转化为L-蛋氨酸。 与其它具抗菌活性的有机酸一样,HMP 在低pH环境下是亲脂的,且可以以扩散的方式被吸收到脊椎动物和细菌或真菌细胞中。一旦进入细胞,pH的变化就会引起这些弱酸的溶解。有机酸的多重作用就是由于这种细胞内的溶解和由此引起的细胞反应。抗菌活性是在肠道肠上皮细胞中,自由质子或许还有阴离子对细菌或真菌细胞的损害作用的结果,溶解被认为是肠促胰液素分泌的结果,该激素可刺激胰腺的分泌。因此,有机酸具有抗菌活性以外的效果。本综述将着重描述有机酸对猪的作用以及HMB作为一种抗菌型饲料添加剂的特定作用。 抗生素的主要作用是抗菌;所有对于消化率和生产性能的作用,可以解释为对胃肠道微生物区系的影响及随之免疫刺激的减少。有机酸具有抗菌活性,但同时还显示出抗菌活性以外的效果。某些细菌品种的减少与饲喂有机酸有关,对于一些耐酸品种如大肠杆菌、沙门氏菌和弯曲杆菌尤为有效。 抗生素和有机酸二者都能提高蛋白质和能量的消化率,其作用方式是降低基础免疫刺激的发生,结果是以降低氨及其它生长抑制性细菌代谢物或许还有总微生物的产量的方式,促进免疫介质的合成与分泌。与抗生素不同,有机酸的抗菌活性依赖于 pH值。有机酸对断奶仔猪的效果明确且显著,而且已观察到对家禽性能也有效果。有机酸具有抗生素以外的几种附加作用,包括使消化物pH降低和胰腺分泌增加。 有机酸应用于仔猪已有多年历史,是因为其对促进健康和生长有积极作用,主要用于断奶后仔猪。猪对断奶应激(与母猪分隔开、环境变化和固体饲料的影响)和一些病原微生物如大肠杆菌和轮状病毒敏感。这些病原微生物随着成年动物胃中pH 值的降低而减少,但青年猪胃中盐酸的分泌较少。此外,胃内容物的酸化异常连同低水平的胰酶分泌,会导致营养素消化不良,同时断奶仔猪对肠道疾病的敏感性增加。根据目前可获得的有机酸的资料来看,它们作为仔猪促生长剂的作用是肯定的。 作为一组化学物质,有机酸被看作是由一般结构R-COOH组成的有机羧酸,包括脂肪酸和氨基酸。并非所有这些有机酸都对肠道微生物区系有作用。 事实上,与特定抗菌活性有关的有机酸都是短链酸(C1-C7),它们或者是简单的一元羧酸如甲酸、乙酸、丙酸和丁酸,或者是带有一个羟基(通常在α-碳原子上)的羧酸如乳酸、苹果酸、酒石酸和柠檬酸。部分这些酸的盐类也显示有促进性能的作用。其它酸如山梨酸和延胡索酸,具有一些抗真菌活性,它们是含有双键的短链羧酸。 有机酸属弱酸,在生理pH范围内只能部分离解。多数具有抗菌活性的有机酸都具有一个pKa 值—即某种酸一半发生离解时的pH值,它们在3~5 之间。 常用作猪和家禽日粮酸化剂的有机酸的常用名称、化学名称、分子式、分子量和一级pKa 值。在这篇综述里,有机酸这个术语将代表那些已被证实有益于动物性能和具有抗菌活性的一组酸及其盐类。值得注意的是,包括HMB,并例证了其与其它用作抗微生物饲料添加剂的有机酸的相似性。蛋氨酸添加作用以外的性能作用证实HMB作为一种有机酸在饲料和仔猪肠道中的活性,这种活性存在于HMB 被吸收和转化为蛋氨酸之前(Buttin,1990)。 同时已知很多对动物生产性能具有有益作用的有机酸对食品和饲料的保存也是有效的。不同的酸,抗菌效果有所不同,取决于酸的浓度和pH值(Chaveerach 等, 2002)。HMB、乳酸和甲酸在不同pH值下,与非有机酸(无机酸)即盐酸的抗菌活性的比较结果[大肠杆菌获自American Type Culture 集团,编#25922。 让大肠杆菌在含1%的盐酸、HMB、乳酸或甲酸的无菌胰胨-豆胨培养液(TSB)中生长。TSB的酸度用盐酸或氢氧化钠调整到4~7.3。用已在TSB中生长好的大肠杆菌贮备液,在0.1%蛋白胨水中培养、离心和再中止培养,至大肠杆菌浓度达到 107CFU/毫升。将细菌(100 微升)接种到试验培养基中,并在35℃带搅拌的条件下进行培养。培养5 小时和24 小时后从每个处理取样。将样品逐级稀释,并点样于盛有胰胨豆胨琼脂培养基的培养皿中以便计数。所有培养皿在35℃培养24 小时。大肠杆菌数量报告为CFU/毫升]。 在pH为7.3 时,几乎没有抗菌活性,但当pH为4 时,所有酸对大肠杆菌都有一定活性,盐酸活性最弱,乳酸次之。本试验中甲酸和HMB 的活性最强,5 小时就有完全的抑菌作用。 此外,每种酸都有各自的抗菌谱,例如正如所知,山梨酸具有抗霉菌活性,而乳酸对细菌更有效。某些酸如甲酸、丙酸和HMB 具有较广的抗菌活性,可以有效抵抗细菌和真菌,包括酵母(Patanen 和Mroz,1999;Doerr 等1995;Enthoven 等,2002)。这种抗菌活性谱已指导动物饲料中有机酸混合物的评估和使用(Mroz,2000)。 据报道,某些酸的混合物在体外具有协同抗菌活性(Huyghebaert,1999)。 一系列研究证实了有机酸对青年猪生产性能的影响,尤其是早期断奶仔猪。最近 Partanen(2001)发表的文章综述了该领域的文献,并提供了现有数据的后分析结果。只考虑了不存在抗生素和铜的情况下单个酸的研究结果。 在对46 头断奶仔猪和23 头育肥猪试验的分析中,发现甲酸、延胡索酸、柠檬酸和二甲酸钾使饲料报酬显著改善。 Partanen 概括说日粮中加酸具有有益效果,尤其对于断奶仔猪,这主要与胃肠道微生物区系有关。 与抗菌活性有关的作用。有机酸在畜牧业中的首项作用是有关饲料的保存。有机酸如山梨酸和丙酸长期以来被用于控制饲料的酸败。有机酸对肠道微生物的活性很相似。 两种情形下,酸改变与抗菌谱相符的微生物种群数。对于饲料,控制真菌生长的活性占主要,而在肠道里,受影响的主要是细菌,细菌的生长受酸性条件严重影响。然而应该强调的是,有机酸的作用机制大不相同,另外还有无机酸如盐酸的作用机制也有别于有机酸(Eidelsburger 等,1992a)。HMB对蛋白粉样品中沙门氏菌生长的影响。结果显示,0.2%HMB阻止了细菌的生长,0.7%HMB实际显示出杀菌作用。低pH对有机酸抗菌活性的重要性,可以解释为其对酸的离解的影响。在低pH条件下,大多数有机酸以非离解形式存在。非离解有机酸是亲脂的,并能扩散到细胞膜中,包括细菌和霉菌的细胞膜(Huyghebaert,1999;Eidelsburger 等,1992a)。一旦在细菌胞质中pH较高,就会引起酸的离解,造成细胞内容物 pH降低,从而对酶学反应和营养素转运体系产生破坏性作用(Cherrington 等, 1991)。 另外,将自由质子转移到细胞外需要能量,这将降低用于扩散的能量的有效性,结果是只达到一定程度的杀菌作用,见图3。 这种直接抗菌活性对饲料和食品卫生的效果是可靠的,因而促成了有机酸作为防腐剂的使用。这同时也解释了为何无机酸如盐酸与有机酸之间存在一种协同作用。盐酸的存在降低消化物的pH值,使更多的有机酸处于非离解状态。直接抗霉菌作用是有机酸减少潮湿垫草中霉菌数的作用机制(BASF,1990)。 口服抗生素具有抗菌作用包括抗肠道微生物。微生物群落的减少及其后续影响可能是抗生素有益效果的主要机制(Bedford,2000)。探讨作用机制必定要关注肠道,因为一些抗生素是不能被吸收的。Anderson 等(1999)最近综述了促生长抗生素主要通过改变肠道微生物区系起作用的证据,也就是说,未发现饲喂抗生素对无菌动物有促生长作用。进一步而言,给无菌动物胃肠道微生物区系给药,会造成生长抑制。 对于家禽,在卫生条件较差的情况下,抗生素的促生长作用更为明显,并且无菌肉仔鸡的生长抑制可以通过注射细菌代谢物如脂多糖或免疫介质如白细胞介素-1诱导产生(Roura 等1992)。另一个与抗生素有关的作用似乎是抗菌活性的一种直接作用结果,那就是通常报道的使肠壁变薄(Coates 等1955)。 这种现象同样发现于无菌动物,包括鸡(Franti 等,1972)。这可能由肠道结缔组织中免疫细胞总数的降低所引起。 服用后,直接抗微生物活性在前肠是最重要的,这里改变消化物pH的能力很有限。前肠包括家禽的嗉囊、肌胃和猪胃。有机酸活性特别对大肠杆菌和其它耐酸微生物有效。它们中间很多是机会病原体,如弯曲杆菌和沙门氏菌。随后亚临床感染的减少归结于与免疫组织有关的肠道的营养需要减少。 这种降低免疫活性的作用是抗菌提高生产性能的主要原因(Bedford,2000)。猪胃 (Bolduan 等1988;Scipioni 等,1978)和前段小肠(Gedek 等1992;Cole 等,1968)微生物活性的降低已有过报道。相似的结果也发现于家禽的小肠、泄殖腔和冷却胴体(Roura 等1992;Hadorn 等,2001)。 前肠较低的pH不仅有利于有机酸的抗菌活性,而且能促进其向肠道上皮的扩散吸收(Huyghebaert,1999)。正如很多有机酸一样,HMB 主要以扩散的方式吸收 (Knight 和Dibner,1984),但在小肠后段是由一种离子依赖型载体系统转运,这种系统同时也转运其它有机酸(Branchet 和Puigserver,1987)。 后肠较高的肠腔pH似乎更有利于酸的离解形式,势必造成扩散吸收的减少,但肠道上皮表面酸性微环境的存在,使非离解形式的有机酸得以扩散到细菌和肠上皮细胞本身(Engelhardt 等,1989)。 有机酸进入空肠和回肠后的抗菌活性的持续性对于有机酸的另一种作用机制也是重要的。空肠里较少的微生物繁殖减少了微生物与宿主在营养上的竞争。这种竞争的减少可能是消化率提高的机制之一。消化率的提高在猪和肉仔鸡方面都有过报道(Huyghebaert,1999)。 有机酸的抗菌活性还有其它效果。Eckel 等(1992)和Eidelsburger 等(1992b)曾描述断奶仔猪饲喂1.25%甲酸时胃、小肠和盲肠中氨的浓度显著降低的情形。这可能由于氨基酸的微生物脱氨减少,有利于氨基酸的吸收—最终观察到的结果是饲喂有机酸的猪,氮的消化率提高,氨的排出减少。 有很多文献证明了氨的毒性,并提出氨的微生物合成减少是饲喂抗生素促进生长的机制之一(Visek,1978)。Eckel 等(1992)也报道在这些动物的小肠里,生物胺浓度降低。这些以及其它一些微生物代谢物可能产生生长抑制作用(Bonem等, 1976)。 。有机酸只有抗菌活性吗?是否还有其它效果?当然有机酸的抗生素作用包括以上报道的很多方面,如提高蛋白质和氨基酸的消化率,减少氨气和生物胺的产量(Dierick 等,1986a,b)。 现已报道的其它效果表明,有机酸具有改变肠道微生物区系的其它作用。包括与酸化有关的其它作用,消化酶和微生物植酸酶活性的提高以及胰腺分泌的增加。还有证据表明,有机酸的存在,可以进胃肠黏膜的生长,尤其是脂肪酸如丁酸。 有机酸能降低猪肠腔里消化物的pH值,尤其是在前肠(Eckel 等1992;Thomlinson 和Lawrene,1981)。这里列举甲酸(1.25%)或乳酸(1%)的例子。pH值降低的程度在胃里达到最大,为0.5-1.0 个pH单位。有趣的是,使用HMB时,肉仔鸡小肠中pH值降低的水平较低(0.2%)。在此情形下,使用小肠混合消化物,pH比3 天时的基础水平低0.25-0.35pH单位(分别为5.64 与5.99)。在胃里,胃pH值的降低激活胃蛋白酶原和其它酶原,使胃中的pH更接近于有利胃蛋白酶活性的最佳值(Huygebaert,1999)。 低pH的另一个作用是提高微生物植酸酶的活性。微生物植酸酶有两个最宜pH 值,即2.5 和4.5-4.7,而且植酸在较低pH条件下易溶解得多(Mroz,2000),这些作用结合起来,使磷的消化率和存留量提高。无菌动物的这些有机酸作用的估计,可给出有机酸对减少微生物区系竞争作用的估计。 断奶仔猪(Cranwell,1995;Botermans 等,1999)和种禽(Nitsan 等,1991)的营养消化率似乎受消化酶分泌的限制。种禽具有增加胰腺分泌的能力(Nitsan,1974),选作大体重的鸡具有较高水平的胰腺和小肠酶分泌水平(Dunnington 和 Siegel,1995)。对于断奶仔猪(Karada,1986)和2 周龄小牛(Kato,等, 1989),有机酸对胰腺(见图4,Thaela 等,1998)和胆汁分泌有影响(Harada 等,1988),调节方式是非离解形式的有机酸扩散到细胞里,然后在较高pH的胞浆里发生离(Huyghebaert,1999)。这一点似乎只与有机酸有关,而与抗生素无关。 已提出的促进分泌的机制是肠上皮细胞上受体的存在,对离解状态的质子产生反应,使肠促胰液素的释放增加(Harada 等,1988)。这种产生于小肠上皮的肠促胰液素释放反应也发生于绵羊(Harada 等,1983)。 遗憾的是,至今为止还没有数据证明禽类对有机酸是否也有胆汁和胰腺分泌增加的反应。 ?在检测有机酸的作用时发现似乎比抗生素具有更大的变异。在证实有机酸作用时的不一致性与不可控制的变因如日粮成分的缓冲力、其它抗菌化合物的存在、生产环境的清洁卫生以及肠道微生物区系的异质性有关。 另外一些研究可以阐明这些因素的影响以及如何将它们的影响减至最低。有很多事实证明有机酸在动物性能方面的抗菌作用,但同时也有反应有机酸无效的报告。 另外,有一些表现性能作用的例子并未同时表现出微生物区系和消化率的改变(Gabert 和Sauer,1995)。尽管还未见系统性的文献综述,但有机酸作用的再现性似乎要低于抗生素。 几种影响有机酸的因素已被证实。或许列举最多的变因是日粮成分的缓冲力(Cherrington 等,1991;Thomlinson 和Lawrence,1981)。缓冲力是指10 克日粮成分的匀浆样品达到指定pH值(通常是3-5)所需的酸(0.1 摩尔盐酸)量(Makkink,2001)。对缓冲力起作用的主要日粮成分是蛋白质和矿物元素。谷物和谷物副产品的缓冲力一般较低。有机酸降低日粮的缓冲力,允许更多的消化物在前肠有效酸化,这对于有效的消化酶活性和微生物繁殖的控制是很重要的。 Blank 等(1999)观察到,缓冲力从23.5 提高到56.7,回肠氨基酸消化率降低可达 10%。建议家禽开食日粮的缓冲力值为0-10(Makkink,2001)。在关于有机酸的研究中,在多数情况下,缓冲力是未控制变量,这可能是研究结果缺乏一致性的主要原因。其它影响有机酸反应程度的因素有配方水平、日粮成分性质及其对肠道微生物的作用。 从日粮中撤除抗生素型促生长剂后,已显示出伴有蛋白质严重消化不良的副作用的增加(Smulders 等,1999)。有抗生素一样,在低水平高度可消化蛋白质日粮中,似乎很少显示出酸的作用。肠道里未消化蛋白的过量,有利于蛋白水解菌的发育,随之是细菌毒素(Corthier 等,1989)或有毒代谢物如生物胺(Eckel,1992)的产生。日粮成分能抑制有机酸作用的另一种方式是乳清粉中乳糖在肠道里的发酵。这种乳糖的产生很重要且产生较早,它可以掩盖添加有机酸的任何效果,尤其对于断奶仔猪。 其它一些日粮成分对细菌具有更加广泛的正作用或副作用,但总是不被很好地了解。小麦就是一个例子,它会引起比玉米更多的肠道紊乱,尤其是新收获的小麦。这里抗菌添加剂可以显示出促进作用。相反,大麦被看作有利于肠道运输,这也是大麦经常用于仔猪日粮的原因。Partanen(2001)注意到有机酸用于小麦日粮中的作用大于玉米或大麦。这些因素可能使有机酸的作用不可能在试验中产生。必须注意用于有机酸试验的日粮的来源。 一个相对变异是试验日粮中抗菌剂的存在。在有机酸试验中,很少发现日粮中同时包括抗生素,但有时存在其它抗菌剂,如高铜或抗球虫药。它们发挥各自的抗菌作用,并使有机酸的作用更为丰富。 在公开发表的文献中,另一个变异来源是所使用的酸、混合物及其浓度的范围。或许再现效果最好的是使用0.5-1.5%的甲酸。但如上所述,表中所有的酸至少有一次是与动物的性能有关的。 使这些研究复杂化的另一个因素是进行这些研究的环境。尽管在一连串试验中都发现了有机酸的效果,但还是在卫生条件较差的情况下抗菌作用最为明显。无论如何,与抗生素一样,有机酸是准许生长多于促进生长,也就是说,它们只能在给定日粮条件下,准许动物生长达到其最大遗传潜力。动物越接近其遗传潜力,就越难以检测到任何作用。这表明在有机酸研究中,环境管理必须是可控制因素。 或许大多数未控制变异是微生物区系本身。尽管大多数品种是相当一致的,但在普通动物中,相当数量未鉴定微生物群体的存在是不可回避的。这将影响有机酸的反应程度。或许区分微生物与胰腺刺激及营养对小肠黏膜的作用的唯一方式是采用无菌试验模型。 当然这种做法在预测商业环境下的反应时存在其局限性。 在动物日粮中使用非治疗抗生素的举张已经在世界范围内迅速消失。抗生素的主要作用是抗菌;它们的所有助消化和促进性能的作用可以解释为对胃肠道微生物区系的影响。短链有机酸同样具有依赖于pH值的特定抗菌活性。对于断奶仔猪,有机酸具有明确且显著的作用,同时发现对家禽的性能有效。细菌的减少与饲喂有机酸有关,尤其对耐酸菌如大肠杆菌、沙门氏菌和弯曲杆菌。抗生素和有机酸可以改善蛋白质和能量的消化率,作用方式是减少亚临床感染的发生率,减少免疫介质的分泌,减少氨气和其它生长抑制性细菌代谢物的产生。 有机酸具有几种抗生素以外的附加效果,包括降低消化物pH值和增加胰腺分泌。 HMB是一种蛋氨酸资源,HMB 被吸收后在动物组织中转化为L-蛋氨酸。但HMB 在饲料和肠道里还有重要作用,因为在转化为氨基酸之前HMB是一种有机酸。 HMB对细菌和霉菌的抗菌活性是特效的,对可能存在于日粮中的任何有机酸是一种补充。HMB的有机酸活性是其蛋氨酸资源活性的一种附加效果。 羧酸羧酸的分类羧酸的官能团是羧基,除甲酸外,都是由羟基和羧基两部分组成。根据羟基的结构不同,分为脂肪酸和芳香酸。羧基与脂肪羟基相连结者,称为脂肪酸;脂肪酸又根据烧基的不饱和羟度分为饱和酯肪酸和不饱和脂肪酸。若脂肪羟基中不含有不饱和键,则称为饱和脂肪酸;若脂肪羟基中含有不饱和键,则称为不饱和脂肪酸。羧基与芳香羟基相连结者,称为芳香酸。羧酸还可以根据其分子中所含羧基的数目不同分为一元羧酸、二元羧酸和多元羧酸。分子中含有一个羧基的称为一元羧酸;分子中含有两个羧基的称为二元羧酸:把分子中含有两个以上羧基的羧酸统称为多元羧酸。 羧酸的命名羧酸常用俗名和系统命名。常用俗名往往是由其来源而得,如干馏蚂蚁得到蚁酸(甲酸),从酰制食用醋中得到醋酸(乙酸)。油酯水解得到高级脂肪酸,如软脂酸(棕榈酸)、硬脂酸、油酸、亚油酸和亚麻酸等。 羧酸的系统命名原则与醛相似。 1.饱和一元脂肪酸的命名 (1)选择含羧基在内的最长碳链作为主链,根据主链碳原子的数目称为某酸。 (2)从羧基碳原子开始用阿拉伯数字对主链碳原子依次编号,也常用希腊字母,把与羧基直接相连的碳原子的位置定为α位,依次为B、V等。 (3)有侧链或取代基时,将其位次、数目和名称写于“某酸”之前。 2.饱和多元脂肪酸的命名饱和二元酯肪酸的命名是选择含有两个羧基的最长碳链作为主链,称为某二酸。例如: HOOC-COOH乙二酸(草酸)HOOC一CH2CH2-COOH丁二酸(琥珀酸) 3.不饱和脂肪酸的命名不饱和脂肪酸命名时,选择含羧基和不饱和键在内的最长碳链为主链,称为某烯酸,并把不饱和键的位置写在“某烯酸”之前。当主链碳原子的数目大于10时,则在中文数字后加个“碳”字。例如: 4.芳香酸的命名芳香酸是以脂肪酸为母体,把芳香羟基作为取代基进行命名。 羧酸的结构羧酸的官能团是羧基,是由羰基和羟基(-OH)相连而成的。但羧酸的性质并不是羰基和羟基性质的加合,而是具有羧基自身的性质。杂化轨道理论认为,羧基中的碳原子是以Sp2杂化的。碳原子的3个Sp2杂化轨道分别与2个氧原子、1个羟基的碳原子或1个氢原子形成3个σ键,并处于同一平面上。羧基碳原子上未参与杂化的p轨道与羰基氧原子上的p轨道从侧面平行重叠形成∏键。羟基中的氧原子上有一对未共用电子对,可与∏键形成p-∏共轭体系。 在p-∏共轭体系中,电子的离域使羟基氧原子上的电子云向羰基转移,导致羟基氧上的电子云密度有所降低,羰基碳上的电子云密度有所增加。因此,p-∏共轭效应的结果,使氧氢间电子云更偏向氧原子,增强了氧氢键的极性,有利于羟基中氢原子的解离,故羧酸表现出明显的酸性;并且羰基碳与其相连的两个氧原子间的键长趋于平均化,其正电性减弱,所以羰基的性质不明显,不易与亲核试剂(如HCN、NaHSO3等)发生加成反应。 羧酸的物理性质常温下,在饱和一元酯肪酸中,甲酸、乙酸、丙酸为具有强烈刺激性气味的无色液体,含4-9个碳原子的羧酸为具有腐败气味的油状液体,癸酸以上为蜡状固体。二元羧酸和芳香酸都是结晶性固体。羧酸的沸点随着相对分子质量的增加而升高。羧酸的沸点比相对分子质量相近的醇为高,如甲酸和乙醇的相对分子质量相同,甲酸的沸点为100.5℃,乙醇的沸点为78.5℃。这是由于羧酸分子间可以形成两个氢键,而且缔合成双分子二聚体,低级的羧酸甚至在气态下即缔合成二聚体。 一元酯肪族羧酸随碳原子数增加,水溶性降低。低级羧酸可与水混溶,高级一元羧酸不溶于水,但能溶于有机溶剂。多元羧酸的水溶性大于相同碳原子的一元酸。 羧酸的化学性质根据羧酸的结构特点,羧酸应具有下列主要的化学性质。 1.酸性羧酸显酸性,是由于羧基中的p-∏共轭效应的影响,使羟基氧原子上的电子云密度降低,从而增强了氢氧键的极性,易于解离出质子。解离后生成的羧基负离子,由于氧上的负电荷通过p-∏共轭而得到分散,使其稳定性增加。 羧酸一般都是弱酸,其酸性强弱可以用pKa来表示,通常羧酸的pKa在3-5之间,比强的无机酸弱,但比酚类(苯酚的pKa为9.96)、碳酸(pKa为6.38)要强,因此羧酸能与氢氧化钠、碳酸钠等反应生成羧酸盐,也能与碳酸氢钠反应,同时生成二氧化碳,而酚则不能发生此反应。 R-COOH+NaOH→R-COONa+NaCl 2R-COOH+NaC03一→2R-COONa+CO2↑+H20 R-COOH+NaHC03一→R-COONa+CO2↑+H20 羧酸的钠盐、钾盐和铵盐一般易溶于水,制药工业中常利用此性质,将水溶性差的药物转变成易溶于水的羧酸盐,以便制备注射剂使用。例如含有羧基的青霉素G的水溶性极差,转变成钾盐或钠盐后水溶性增大,便于临床使用。 2.羧基中羟基的取代反应羧基中的羟基在一定条件下,可被羟氧基(一OR)、卤素(-X)和酰氧基取代,分别生成酯、酰卤和酸酐等羧酸衍生物。 (1)酯的生成:羧酸与醇在强酸(如硫酸等)催化下,生成酯和水的反应,称为酯化反应。该反应是羧酸分子中羧基上的羟基与醇分子中羟基上的氢原子结合生成水,其余部分结合生成酯。 酯化反应是可逆反应,其逆反应是水解反应,即酯水解为羧酸和醇。酯化反应的速度很慢,在通常情况下,该可逆反应需要很长时间才能达到平衡。为了加快反应速率,缩短到达平衡的时间,常加入浓硫酸等作催化剂,并在加热的条件下进行。例如: 羧酸与醇发生酯化反应,生成的酯称为羧酸酯。一般所称的酯,通常是指羧酸酯。从结构上分析,酯可以看做是由酰基和羟氧基组成的化合物。酰基是指羧酸分子中去掉羧基上的羰基后,剩余的部分。例如: 羧酸酯根据分子中相应的羧酸和醇来命名,称“某酸某酯”。 (2)酰卤的生成:羧酸和磷的卤化物(如五氯化磷、三氯化磷和氯化亚砜等)发生反应生成酰卤。 (3)酸酐的生成:一元羧酸除甲酸外与脱水剂(如五氧化二磷等)共热,两个分子羧酸间脱去1个分子水生成酸酐。 某些二元羧酸加热,也发生分子内脱水,生成较稳定的具有五元或六元环的酸酐。 3.α-氢的卤代反应羧酸分子中的α-碳原子上的氢原子具有一定的活泼性。但因羧基中的羟基与羰基形成p-∏共轭体系,使羧基碳上的电子云密度从羟基氧原子上得到部分补充。因而羧酸a-氢原子的活性较醛酮的α-氢原子弱,发生在该处的取代反应也较醛酮为慢。例如羧酸α氢原子的卤代反应常常需在催化剂(如红磷等)的存在下才能进行,生成α-卤代酸,α-且氢原子是逐步被取代的。 4.脱羧反应羧酸分子经加热脱去羧基放出二氧化碳的反应称为脱梭反应。通常一元酯肪羧酸比较稳定,不易发生脱羧反应。但在特殊的条件下,如碱石灰(NaOH+CaO)与乙酸钠共热,则可脱羧生成甲烷。 芳香羧酸比较容易脱羧,由于苯环与羧基之间的吸电子作用,有利于羧基与苯环之间的键断裂,尤其是2,4,6-三硝基苯甲酸更容易脱羧而形成1,3,5-三硝基苯。 脱羧反应在生物体内的许多生化反应中占有重要地位,此反应在生物体内脱羧酶作用下进行的。 5.二元羧酸的热解反应二元羧酸除可以发生羧基的所有反应外,由于分子中两个羧基的相互影响,具有某些特殊性质。二元羧酸对热不稳定,当加热这类羧酸时,随着两个羧基间碳原子数的不同,可发生不同的反应。有的发生脱羧反应,有的发生脱水反应,有的脱羧反应与脱水反应同时进行。 (1)脱羧反应:乙二酸、丙二酸受热时,发生脱羧反应,生成少1个碳原子的一元羧酸。 (2)脱水反应:丁二酸、戊二酸加热时分子内不发生脱羧反应而发生脱水反。应,生成环状的酸酐。 (3)同时脱羧脱水反应:己二酸、庚二酸在氢氧化钡存在下加热时,则分子内脱水和脱羧生成环酮。 例如: 含8个以上碳原子的酯肪二元酸受热时,不能发生上述反应生成大于六元的环酮,而是分子间脱水,生成高分子链状的缩合酸酐。这说明,在有可能形成环状化合物的条件下,都有一种形成张力较小的五元环或六元环的趋势。 甲酸HCOOH甲酸俗名蚁酸,存在于蜂类、蚁类等昆虫的分泌物中。甲酸是具有刺激性的无色液体,易溶于水,沸点为100.50℃,具有很强的腐蚀性。 甲酸的结构比较特殊,其羧基直接与氢原子相连,既含有羧基又含有醛基。因此甲酸具有羧酸和醛的性质。甲酸除了酸性显著地强于其他饱和一元酸以外,还具有还原性,能与托伦试剂发生作用生成银镜;能同斐林试剂反应生成氧化亚铜沉淀;还能使高锰酸钾溶液褪色。这些反应可鉴别甲酸。 甲酸有杀菌力,可作消毒剂或防腐剂。 乙酸CH3-COOH乙酸是食醋的主要成分,故俗名醋酸。纯净的乙酸为具有强烈刺激性酸味的无色液体,能与水混溶,沸点1180℃,熔点16.70℃,在温度低于16.50℃时凝结为冰状固体,故称为冰醋酸。乙酸是饱和一元羧酸的代表,具有饱和一元酸的性质。冰醋酸为制药工业原料和实验室常用试剂。 乙酸具有抗细菌和真菌的作用,可作为消毒防腐剂。如0.5%-2%的乙酸溶液可用于洗涤烫伤、灼伤创面;30%的乙酸溶液外擦可治疗甲癣、鸡眼等。另外,按每m3空间用2ml食醋熏蒸,可以预防流感和感冒。 苯甲酸C6H5-COOH苯甲酸为最简单的芳香酸,因存在于安息香树胶中,俗名为安息香酸。苯甲酸是无味的白色晶体,熔点122.40℃,微溶于冷水,易溶于热水,能升华。苯甲酸具有防腐杀菌作用,其毒性较低,故苯甲酸及其钠盐常用作食品、药物制剂和日用品的防腐剂。 乙二酸HOOC-COOH乙二酸是最简单的二元羧酸,常以盐的形式存在于草本植物中,俗称草酸。草酸通常为含有2分子结晶水的无色结晶,易溶于水和乙醇,而不溶于醚等有机溶剂;当加热到101-1020C时,草酸就失去结晶水而成为无水草酸,无水草酸的熔点是189.5℃。 草酸分子中由于两个羧基直接相连,1个羧基对另1个羧基产生吸电子诱导效应,所以其酸性比其他二元羧酸和一元羧酸的酸性都强。草酸有还原性,容易被氧化剂氧化成二氧化碳和水。例如: 高价的铁盐可被草酸还原成易溶于水的低价铁盐,故可用草酸溶液洗除铁锈和蓝墨水的痕迹。 丁二酸HOOC-CH2-CH2-COOH丁二酸俗名琥珀酸,最初是由蒸馏琥珀而得到的,因此而得名。琥珀是松酯的化石,含琥珀酸8%左右。丁二酸为无色结晶,熔点185-187℃,溶于水,微溶于乙醇、乙醚、丙酮等有机溶剂。丁二酸是体内糖代谢过羟中的中间产物。在医药上有抗痉挛、法痰及利尿作用。 羟基酸分子中除含有羧基外,还含有其他官能团的化合物,称为具有复合官能团的羧酸,又称为取代羧酸。羟基酸就是取代羧酸的一种,分子中既含有羟基又含有羧基的复合官能团化合物。取代羧酸不仅具有单一官能团的一般性质,而且还具有由于两个不同官能团相互影响而产生的特殊性质。羟基酸广泛存在于动植物体内,有的是生物体内进行生命活动的物质,有的是合成药物的原料,有的作为食品的调味剂。 羟基酸的分类和命名根据羟基酸中羟基所连接的羟基不同,羟基酸分为醇酸和酚酸两类。醇酸是指酯肪羧酸羟基上的氢原子被羟基取代的衍生物。酚酸是指芳香族羧酸芳环上的氢原子被羟基取代的衍生物。羟基酸分子中的羟基或羧基的数目可以是一个或多个。 羟基酸的命名是以羧酸为母体,羟基作为取代基。用阿拉伯数字或希腊字母标明羟基及其他取代基的位置。由于许多羟基酸来源于自然界}故常根据其来源而采用俗名。例如: 羟基酸的化学性质羟基酸分子中含有羟基和羧基,具有羟基和羧基的一般性质。由于羟基和羧基间相互影响,又具有一些特殊性质。这些性质又因羟基和羧基的相对位置不同而表现出差异。 (一)酸性 由于醇酸分子中羟基的吸电子诱导效应,使羧基的离解度增加,酸性增强,因此一般醇酸的酸性比相应的羧酸强。由于诱导效应随传递距离的增长而减弱,故β-位上的羟基对酸性的影响较小。例如: (二)氧化反应 醇酸中的羟基比醇中的羟基容易氧化,托伦试剂、稀硝酸不能氧化醇,但能把α-羟基酸氧化为α-酮酸。例如: (三)脱水反应 羟基酸对热不稳定,加热时易发生脱水反应。由于羟基和羧基间的相对位置不同,脱水反应的方式也不同。 1.α-羟基酸的脱水α-羟基酸受热时,发生分子间羧基和羟基的交叉脱水反应,生成六元环的交酯。例如: 交酯为结晶性物质,与酯一样在酸和碱溶液中加热可发生水解反应,生成原来的α-羟基酸。 2.B-羟基酸的脱水B-羟基酸中的α-氢同时受羧基和羟基的影响,比较活泼,所以受热时,容易与羟基发生分子内脱水,生成α,B-不饱和羧酸.例如: 3.γ-、8-羟基酸脱水γ-或8-羟基酸在室温下分子内的羟基与羧基之间脱水生成环状结 构的酯,称内酯。五元环内酯称γ-内酯,六元环内酯称8-内酯。 内酯和酯一样水溶性较小,在碱液中易开环生成相应的水溶性的γ-、8-羟基酸盐。再用稀酸酸化,又自动脱水环化成γ-或8-内酯,并从水中析出。 (四)脱羧反应 α-羟基酸中羟基和羧基距离较近,由于诱导效应,使α-碳原子和羧基之间的电子云密度降低,有利于碳-碳键的断裂。当α-羟基酸与稀硫酸共热时,发生分解脱羧,生成甲酸和醛或酮。 如果与酸性高锰酸钾反应,则具有还原性的甲酸和醛亦被氧化。 常见的羟基酸乳酸的化学名称为2-羟基丙酸或α-羟基丙酸,最初是从酸牛奶中发现的,故俗称为乳酸。乳酸也存在于动物的肌肉中,人在剧烈运动时,急需大量能量,通过糖分解成乳酸,同时释放能量以供急需,而肌肉中乳酸含量增加,会使人有酸痛的感觉,休息后,肌肉中的乳酸就转化为水、二氧化碳和糖,酸痛感消失。因此乳酸是人体中糖代谢的中间产物。 乳酸为无色或淡黄色粘稠液体,熔点为180C,无臭、有酸味,有吸湿性,能溶于水、乙醇和甘油。乳酸具有消毒防腐作用,加热蒸发乳酸的水溶液,可以进行空气消毒灭菌。常用乳酸钠(CH3CHOHCOONa)纠正酸中毒,用乳酸钙CH3CHOHCOO)2Ca·5H20)用来治疗因缺钙而引起的疾病,如佝偻病等。乳酸还大量用于食品、饮料工业。 {二)苹果酸HO-CH-COOH CH2一-COOH 苹果酸的化学名称为羟基丁二酸,在未成熟的苹果中含量较高而得名苹果酸。苹果酸为无色针状结晶,熔点1000C,易溶于水和乙醇,微溶于乙醚。苹果酸是体内糖代谢过羟中的中间产物,在体内酶的催化下脱氢生成草酰乙酸。 苹果酸既是α-羟基酸,又是β-羟基酸,由于亚甲基上的氢原子较活泼,苹果酸受热时能以B-羟基酸的形式脱去一分子水生成丁烯二酸,丁烯二酸加水后,又可得到苹果酸。 酒石酸的化学名称为2,3-二羟基丁二酸,存在于各种果汁中,主要以酸式盐的形式存在于葡萄中,难溶于水和乙醇,所以在以葡萄为原料酰酒的过羟中,生成的酒石酸氢佛就以沉淀的形式析出,此沉淀即酒石,酒石再与无机酸作用,生成游离的酒石酸,酒石酸的名称由此而来。 酒石酸是透明结晶,熔点1700C,易溶于水。酒石酸铮铮(KOOC-CHOH-CHOHCOSbO)又称吐酒石,医药上用作催吐剂,也用于治疗血吸虫病;酒石酸钾钠(KOOC-一一CHOH一CHOH一COONa)可用作泻药,在实验室也用于配制斐林试剂。 柠檬酸别名称为拘橼酸,化学名称为3-羟基-3-羧基戊二酸,主要存在于柑橘果实中,尤以柠檬中含量最多。柠檬酸为透明结晶,不含结晶水的柠檬酸熔点1530C,易溶于水、乙醇和乙酯,有较强的酸味。在食品工业中用作糖果和饮料的调味剂。在医药上,柠檬酸铁铵是常用补血药;柠檬酸钠有防止血液凝固的作用,常用作抗凝血剂。 柠檬酸是人体内糖、酯肪和蛋白质代谢的中间产物,是糖有氧氧化过羟中三羧酸循环的起始物。在酶的催化下,由柠檬酸经顺乌头酸转化成异柠檬酸,然后进行氧化和脱羧反应,变成a-酮戊二酸。 水杨酸化学名称为邻-羟基苯甲酸,又名柳酸,存在于柳树、水杨树及其他许多植物中。水杨酸是白色针状结晶,熔点157-1590C,微溶于水,易溶于乙醇。水杨酸属酚酸,具有酚和羧酸的一般性质。例如,与三氯化铁试剂反应显紫色,在空气中易氧化,水溶液显酸性,能成盐、成酯等。 水杨酸具有清热、解毒和杀菌作用,其酒精溶液可用于治疗因霉菌感染而引起的皮肤病。由于水杨酸对肠胃有刺激作用,不宜内服,多用水杨酸的衍生物,可供药用的水杨酸衍生物主要有以下几种。 乙酰水杨酸的商品名为阿司匹林,可由水杨酸与乙酐在冰醋酸中加热到800C进行酰化而制得。 乙酰水杨酸为白色针状结晶,熔点143OC,微溶于水。常用作解热镇痛药,由阿司匹林、非那西丁与咖啡因三者配伍的制剂为复方阿司匹林,常称为APC。 对-氨基水杨酸的化学名称为4-氨基-2-羟基苯甲酸,简称PAS,为白色粉末,微溶于水,是抗结核药物。与PAS相比,其钠盐(PAS-Na)的水溶性较大,而刺激性较小,故一般注射都用PAS-Na。为增强疗效,常把PAS-Na与链霉素或异烟肼合用,治疗各种结核病。 水杨酸甲酯俗名冬青油,是由冬青树叶中提取得到。水杨酸甲酯为无色液体,沸点为1900C,具有特殊香味。可作扭伤时的外擦剂,也用作配制牙膏、糖果等的香料。 酮酸酮酸的结构和命名分子中同时含有羧基和酮基的化合物称为酮酸。酮酸与羟基酸→样,也是具有复合官能团的羧酸。在生物体内,酮酸可由相应的羟基酸氧化而得。例如: 根据分子中羧基和酮基的相对位置,可把酮酸分为α-酮酸、B-酮酸、γ-酮酸等。α-酮酸和B-酮酸是较为重要的酮酸,是人体内糖、脂肪和蛋白质等代谢过程中产生的中间产物。 酮酸的系统命名与羟基酸的命名相似,是选择含有羧基和酮基的最长碳链作为主链,酮基作为取代基,用”氧代”表示,并用阿拉伯数字或希腊字母标明酮基的位置。医学上常采用俗名或习惯名称。例如: 酮酸的化学性质酮酸分子中含有羧基和酮基两种官能团,因此既有羧酸的性质,如成盐和成酯等;又有酮的典型反应,如与羟胺反应,加氢还原等。此外,由于两种官能团的相互影响,也有一些特殊性质,如α-酮酸、B-酮酸易发生脱羧反应等。 (一)还原反应 羟基酸能被氧化生成酮酸,酮酸也能被加氢还原成羟基酸。例如: 体内的这些反应都是在酶的催化下进行。 (二)脱羧反应 α-酮酸分子中,酮基与羧基直接相连,由于氧原子的吸电子效应,使酮基与羧基碳原子间的电子云密度降低,碳碳键容易断裂,脱去二氧化碳生成少一个碳原子的醛。例如: B-酮酸比α-酮酸更易脱羧。这是由于两方面的因素而产生的,一方面由于酮基上氧原子的吸电子诱导效应影响;另一方面由于酮基氧与羧基氢形成分子内氢键。因此B-酮酸只有在低温下稳定,在室温以上易脱羧成酮,这是B-酮酸的共性。例如: 酮式-烯醇式的互变异构现象B-丁酮酸只有在低温下稳定,但形成的酯是稳定的化合物,一般制成B-丁酮酸乙酯(又称乙酰乙酸乙酯,便于保存。其结构如下: 乙酰乙酸乙酯可以和亚硫酸氢钠等亲核试剂发生加成反应,能与2,4-二硝基苯肼反应生成橙色的2,4-二硝基苯腙沉淀,这表明分子中具有羰基结构。它又能与三氯化铁试液反应显紫色;能使溴水褪色;能与金属钠反应放出氢气。这些性质无法用酮和酯的结构来说明。然而,凡具有烯醇式结构的化合物都有这些性质,这表明乙酰乙酸乙酯分子中存在着烯醇式结构。经物理和化学方法研究证明,乙酰乙酸乙酯实际上不是单一物质,而是酮式异构体和烯醇式异构体的混合物,两种异构体互相转变构成一动态平衡体系: 两种异构体以一定比例呈动态平衡存在,其酮式异构体占93%,烯醇式异构体占7%。在室温下,两种异构体相互转变极快,二者不能分离。这种处于动态平衡的同分异构现象,称冱变异构现象,在平衡体系中能彼此互变的异构体称为互变异构体。酮式·烯醇式互变异构是互变异构现象中的一种。 乙酰乙酸乙酯能够产生互变异构现象,是由于酮式结构中的亚甲基(-CH2-)受到羰基和酯基的双重影响,亚甲基上的氢原子变得很活泼,能以质子的形式转移到羰基氧上形成烯醇式异构体。因此,乙酰乙酸乙酯的互变异构是由质子的位移而产生的。除乙酰乙酸乙酯外,还有许多物质,如β二酮,以及某些糖和含氮化合物等,也能产生这种互变异构现象。异构体之间的互变均为质子的1,3-移位。 常见的酮酸丙酮酸是最简单的酮酸,为无色有刺激性臭味的液体,沸点1650C(分解),可与水混溶。由于受碳基的影响,丙酮酸的酸性比丙酸的酸性强,也比乳酸的酸性强。丙酮酸是人体内糖、酯肪、蛋白质代谢的中间产物,在体内酯的催化下,易脱羧氧化生成乙酸,也可被还原生成乳酸: B-丁酮酸又称乙酰乙酸或3-氧代丁酸。B-丁酮酸是人体内酯肪代谢的中间产物,其纯品为无色粘稠液体,酸性比醋酸强,性质不稳定,受热易发生脱羧反应生成丙酮和二氧化碳,亦可被还原生成B-羟基丁酸: 人体内酯肪代谢时能生成B-丁酮酸,J3-丁酮酸在酶的催化下可还原生成B-羟基丁酸,脱羧则生成丙酮。 医学上将B-丁酮酸、B-羟基丁酸和丙酮三者总称为酮体。酮体是脂肪酸在人体内不能完全被氧化成二氧化碳和水的中间产物,正常情况下能进一步氧化分解,因此正常人体血液中只存在微量(小于0.5mmol/L)酮体.但长期饥饿或患糖尿病时,由于代谢发生障碍,血液和尿中的酮体含量就会增高。酮体呈酸性,如果酮体的增加超过了血液抗酸的缓冲能力,就会引起酸中毒。因此,检查酮体可以帮助对疾病的诊断。 在生物体内进行物质代谢的三羧酸循环过程中,柠檬酸发生降解反应生成α-酮戊二酸。α-酮戊二酸是晶体,熔点109-110OC,能溶于水,具有α-酮酸的化学性质。α-酮戊二酸是人体内糖代谢的中间产物,在酶的作用下,发生脱羧和氧化反应生成琥珀酸。 α-酮丁二酸又称草酰乙酸,为晶体,能溶于水,是生物体内物质代谢的中间产物,在酶的作用下由琥珀酸转变而成。 草酰乙酸既是α-酮酸,又是B-酮酸,在室温以上易脱羧生成丙酮酸。在人体内经酶作用,也能发生此反应。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。