词条 | 一元四次方程 |
释义 | 计算方法费拉里法费拉里的方法是这样的: 方程两边同时除以最高次项的系数可得 x^4+bx^3+cx^2+dx+e=0 (1) 移项可得 x^4+bx^3=-cx^2-dx-e (2) 两边同时加上(1/2bx)^2 ,可将(2)式左边配成完全平方, 方程成为 (x^2+1/2bx)^2=(1/4b^2-c)x^2-dx-e (3) 在(3)式两边同时加上(x^2+1/2bx)y+1/4y^2 可得 [(x^2+1/2bx)+1/2y]^2= (1/4b^2-c+y)x^2+(1/2by-d)x+1/4y^2-e (4) (4)式中的y是一个参数。当(4)式中的x为原方程的根时,不论y取什么值,(4)式都应成立。 特别,如果所取的y值使(4)式右边关于x的二次三项式也能变成一个完全平方式,则对(4)对两边同时开方可以得到次数较低的方程。 为了使(4)式右边关于x的二次三项式也能变成一个完全平方式,只需使它的判别式变成0,即 (1/2by-d)^2-4(1/4b^2-c+y)(1/4y^2-e)=0 (5) 这是关于y的一元三次方程,可以通过塔塔利亚公式来求出y应取的实数值。 把由(5)式求出的y值代入(4)式后,(4)式的两边都成为完全平方,两边开方,可以得到两个关于x的一元二次方程。 解这两个一元二次方程,就可以得出原方程的四个根。 费拉里发现的上述解法的创造性及巧妙之处在于:第一次配方得到(3)式后引进参数y,并再次配方把(3)式的左边配成含有参数y的完全平方,即得到(4)式,再利用(5)式使(4)的右边也成为完全平方,从而把一个一元四次方程的求解问题化成了一个一元三次方程及两个一元二次方程的求解问题。 不幸的是,就象塔塔利亚发现的一元三次方程求根公式被误称为卡当公式一样,费拉里发现的一元四次方程求解方法也曾被误认为是波培拉发现的 笛卡尔法一般的四次方程还可以待定系数法解,这种方法称为笛卡尔法,由笛卡尔于1637年提出。 先将四次方程化为x^4+ax^3+bx^2+cx+d=0的形式。 令x=y-a/4,整理后得到y^4+py^2+qy+r=0 (1) 设y^4+py^2+qy+r=(y^2+ky+t)(y^2-ky+m)=y^4+(t+m-k^2)y^2+k(m-t)y+tm 比较dy对应项系数,得t+m-k^2=p,k(m-t)=q,tm=r 设k≠0,把t和m当作未知数,解前两个方程,得t=(k^3+pk-q)/(2k),m=(k^3+pk+q)/(2k) 再代入第三个方程,得((k^3+pk)^2-q^2)/(4k^2)=r 。即k^6+2pk^4+(p^2-4r)k^2-q^2=0 解这个方程,设kο是它的任意一根,tο和mο是k=ko时t和m的值那么方程(1)就成为 (y^2+koy+to)(y^2-koy+mo)=0 解方程y^2+koy+to=0和y^2-koy+mo=0就可以得出方程(1)的四个根,各根加上-4/a就可以得出原方程的四个根。 求根公式方程为 x^4+b·x^3+c·x^2+d·x+e=0 如果设 P=bd-4e-c/3 Q=bcd/27+﹙104/27﹚·ce-(2/27)·c-be-d D=-4·P-27·Q u=√(-13.5·Q+3/2·√(-3D)) v=√(-13.5·Q-3/2·√(-3D)) y=(u+v-3)/3 N=﹙1/4﹚b+﹙1/4﹚·b-c+y-(2y+4)·√﹛﹙1/4﹚·y-e﹜-b·√﹛﹙1/4﹚·y-c+y﹜ M=﹙1/4﹚b+﹙1/4﹚·b-c+y-(2y-4)·√﹛﹙1/4﹚·y-e﹜+b·√﹛﹙1/4﹚·y-c+y﹜ 则 X1=﹙1/2﹚·√﹙﹙1/4﹚·b-c+y﹚-﹙1/4﹚·b+﹙1/2﹚·√N X2=﹙1/2﹚·√﹙﹙1/4﹚·b-c+y﹚+﹙1/4﹚·b+﹙1/2﹚·√N X3=-﹙1/2﹚·√﹙﹙1/4﹚·b-c+y﹚-﹙1/4﹚·b+﹙1/2﹚·√M X4=-﹙1/2﹚·√﹙﹙1/4﹚·b-c+y﹚+﹙1/4﹚·b+﹙1/2﹚·√M 对照一元三次的公式,会发现它们有相似之处。 应用举例如方程 x^4-1=0 其中 b=0 c=0 d=0 e=-1 则 P=4 Q=0 D=-256 u=6 v=-6 y=0 N=4 M=-4 则 X1=1 X2=-1 X3=i X4=-i 这就是方程 x^4-1=0的四个根,其中有两个实根,两个虚根。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。