词条 | 谢尔宾斯基三角形 |
释义 | 先作一个正三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用黑色三角形代表挖去的面积,那么白三角形为剩下的面积(我们称白三角形为谢尔宾斯基三角形)。如果用上面的方法无限连续地作下去,则谢尔宾斯基三角形的面积越趋近于零,而它的周长越趋近于无限大(如图)。 若设操作次数为n(每挖去一次中心三角形算一次操作) 则剩余三角形面积公式为:4的n次方分之3的n次方 将边长为1的等边三角形区域,均分成四个小等边三角形,去掉中间一个,然后再对每个小等边三角形进行相同的操作得……,这样的操作不断继续下去直到无穷,最终所得的极限图形称为谢尔宾斯基垫片。谢尔宾斯基垫片的极限图形的面积趋于零,而小图形的数目趋于无穷,作为小图形的边的线段数目趋于无穷,实际上是一个线集。操作n次后 边长r=(1/2)n, 三角形个数N(r)=3 n, 根据公式N(r)=1/rD,3n=2Dr,D=ln3/ln2=1.585。 所以谢尔宾斯基垫片是1.585。 |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。