请输入您要查询的百科知识:

 

词条 无界函数
释义

无界函数的定义:对任意的M>=0且小于正无穷,存在x,使得|f(x)|>=M,则f(x)无界。典型的例如y=x。y=x^2等都是无界函数。

1.无界函数与无穷大量两个概念之间有严格的区别:

无界函数的概念是指某个区间上的。若对于任意的正数,总存在某个点,使得|f(x)|>=m,则称该函数是区间上的无界函数。

无穷大量是指在自变量的某个趋限过程(例)下因变量的变化趋势.若对于任意正数,总存在,对一切满足的,总有,则称函数是时的无穷大量。

无穷大量必是无界量,无界量未必是无穷大量。

举例:有函数Y=X*sinX,则此函数为无界函数,但不为无穷函数。因为当X趋于无穷时,函数值关于X轴上下摆动,总有某点Y=0,所以不为无穷。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/11/15 23:54:30