请输入您要查询的百科知识:

 

词条 外置光驱
释义

顾名思义,外置光驱就是在机箱外面放置的光驱,具有便携、移动的特点。具有多种数据接口,主要还是USB接口,有的可能还具有12V直流电源接口,具有多种类型,比如CD -ROM、DVD-ROM、蓝光光驱等等。

产生背景

随着上网本的热销,其小巧的外型,便于携带赢得了无数用户青睐。小巧的身材也限制了机体的尺寸,使得上网本机身内部无法放置内置光驱,在安装系统、读取光盘资料或刻录备份数据时,一台外置光驱、刻录机是必不可少的装备。纵观目前市场上的外置光驱、刻录机,各品牌的外置光驱有很多,而外置光驱的接口有PC卡转接型、USB接口型、IEEE1394接口等,但是USB接口是目前使用最广泛的笔记本外置光驱接口,因此采用USB接口的外置光驱凭借着良好的通用性赢得了广大消费者的认可。

工作原理

激光头是光驱的心脏,也是最精密的部分。它主要负责数据的读取工作,因此在清理光驱内部的时候要格外小心。

激光头主要包括:激光发生器(又称激光二极管),半反光棱镜,物镜,透镜以及光电二极管这几部分。当激光头读取盘片上的数据时,从激光发生器发出的激光透过半反射棱镜,汇聚在物镜上,物镜将激光聚焦成为极其细小的光点并打到光盘上。此时,光盘上的反射物质就会将照射过来的光线反射回去,透过物镜,再照射到半反射棱镜上。

此时,由于棱镜是半反射结构,因此不会让光束完全穿透它并回到激光发生器上,而是经过反射,穿光驱过透镜,到达了光电二极管上面。由于光盘表面是以突起不平的点来记录数据,所以反射回来的光线就会射向不同的方向。人们将射向不同方向的信号定义为“0”或者“1”,发光二极管接受到的是那些以“0”,“1”排列的数据,并最终将它们解析成为我们所需要的数据。 在激光头读取数据的整个过程中,寻迹和聚焦直接影响到光驱的纠错能力以及稳定性。寻迹就是保持激光头能够始终正确地对准记录数据的轨道。

当激光束正好与轨道重合时,寻迹误差信号就为0,否则寻迹信号就可能为正数或者负数,激光头会根据寻迹信号对姿态进行适当的调整。如果光驱的寻迹性能很差,在读盘的时候就会出现读取数据错误的现象,最典型的就是在读音轨的时候出现的跳音现象。所谓聚焦,就是指激光头能够精确地将光束打到盘片上并受到最强的信号。

当激光束从盘片上反射回来时会同时打到4个光电二极管上。它们将信号叠加并最终形成聚焦信号。只有当聚焦准确时,这个信号才为0,否则,它就会发出信号,矫正激光头的位置。聚焦和寻道是激光头工作时最重要的两项性能,我们所说的读盘好的光驱都是在这两方面性能优秀的产品。

目前,市面上英拓等少数高档光驱产品开始使用步进马达技术,通过螺旋螺杆传动齿轮,使得1/3寻址时间从原来85ms降低到75ms以内,相对于同类48速光驱产品82ms的寻址时间而言,性能上得到明显改善。

而且光驱的聚焦与寻道很大程度上与盘片本身不无关系。目前市场上不论是正版盘还是盗版盘都会存在不同程度的中心点偏移以及光介质密度分布不均的情况。当光盘高速旋转时,造成光盘强烈震动的情况,不但使得光驱产生风噪,而且迫使激光头以相应的频率反复聚焦和寻迹调整,严重影响光驱的读潘小过于使用寿命。在36X-44X的光驱产品中,普遍采用了全钢机芯技术,通过重物悬垂实现能量的转移。

但面对每分钟上万转的高速产品,全钢机芯技术显得有些无能为力,市场上已经推出了以ABS技术为核心的英拓等光驱产品。ABS技术主要是通过在光盘托盘下配置一副钢珠轴承,当光盘出现震动时,钢珠会在离心力的作用下滚动到质量较轻的部分进行填补,以起到瞬间平衡的作用,从而改善光驱性能。

光驱种类

外置光驱有两种:

CD-ROM光驱:又称为致密盘只读存储器,是一种只读的光存储介质。它是利用原本用于音频CD的CD-DA(Digital Audio)格式发展起来的。

DVD光驱:是一种可以读取DVD碟片的光驱,除了兼容DVD-ROM,DVD-VIDEO,DVD-R,CD-ROM等常见的格式外,对于CD-R/RW,CD-I,VIDEO-CD,CD-G等都要能很好的支持。

保养维护

大家知道,激光头是最怕灰尘的,很多光驱长期使用后,识盘率下降就是因为尘土过多,所以平时不要把托架留在外面,也不要在电脑周围吸烟。而且不用光驱时,尽量不要把光盘留在驱动器内,因为光驱要保持“一定的随机访问速度”,所以盘片在其内会保持一定的转速,这样就加快了电机老化(特别是塑料机芯的光驱更易损坏)。另外在关机时,如果劣质光盘留在离激光头很近的地方,那当电机转起来后很容易划伤光头。 散热问题也是非常重要的,一定要注意电脑的通风条件及环境温度的高低,机箱的摆放一定要保证光驱保持在水平位置,否则光驱高速运行时,其中的光盘将不可能保持平衡,将会对激光头产生致命的碰撞而损坏,同时对光盘的损坏也是致命的,所以在光驱运行时要注意听一下发出的声音,如果有光盘碰撞的噪音请立即调整光盘,光驱或机箱位置。

故障维修

故障现象:当光驱出现问题时,一般表现为光驱的指示灯不停地闪烁、不能读盘或读盘性能下降;光驱盘符消失。光驱读盘时蓝屏死机或显示“无法访问光盘,设备尚未准备好”等提示框等。

光驱连接不当造成

光驱安装后,开机自检,如不能检测到光驱,则要认真检查光驱排线的连接是否正确、牢靠,光驱的供电线是否插好。如果自检到光驱这一项时出现画面停止,则要看看光驱(主、从)跳线是否无误。 提醒:光驱尽量不要和硬盘连在同一条数据线上。

内部接触问题

如果出现光驱卡住无法弹出的情况,可能就是光驱内部配件之间的接触出现问题,大家可以尝试如下的方法解决:将光驱从机箱卸下并使用十字螺丝刀拆开,通过紧急弹出孔弹出光驱托盘,这样你就可以卸掉光驱的上盖和前盖。卸下上盖后会看见光驱的机芯,在托盘的左边或者右边会有一条末端连着托盘马达的皮带。你可以检查此皮带是否干净,是否有错位,同时也可以给此皮带和连接马达的末端上油。另外光驱的托盘两边会有一排锯齿,这个锯齿是控制托盘弹出和缩回的。请你给此锯齿上油,并看看它有没有错位之类的故障。如果上了油请将多余的油擦去,然后将光驱重新安装好,最后再开机试试看。 提醒:不过由于这种维修比较专业,建议大家最好找专业人士修理。

CMOS设置问题

如果开机自检到光驱这一项时出现停止或死机的话,有可能是CMOS设置中的光驱的工作模式设置有误所致。一般来说,只要将所有用到的IDE接口设置为“AUTO”,就可以正确地识别光驱工作模式了。对于一些早期的主板或个别现象则需要进行设置。

驱动问题

在Windows系统中,当主板驱动因病毒或误操作而引起丢失时,会使IDE控制器不能被系统正确识别,从而引起光驱故障,这时我们只要重新安装主板驱动就可以了。 另外,当一个光驱出现驱动重复或多次安装等误操作时会使Windows识别出多个光驱,这会在Windows启动时发生蓝屏现象。我们只要进入Windows安全模式(点选“我的电脑→属性→CD-ROM”)删除多出的光驱就解决了。

光驱不支持DMA

早期的光驱可能不支持DMA,可以将光驱的DMA接口关闭以免造成不兼容等现象。完成设置后,按下“确定”按钮,重新启动电脑即可。 DMA接口光驱与主板不兼容时,也应关闭DMA。如果你真想发挥一下光驱DMA所带来的性能的话,建议升级主板的BIOS或光驱的固件(Firmware)。另外,光驱使用久后,会出现读盘不稳定的现象,我们可以试着关闭DMA,以降低性能,提高稳定性。

虚拟光驱发生冲突

我们在安装光驱的同时,一般会装个虚拟光驱使用。但安装虚拟光驱后,有时会发现原来的物理光驱“丢失”了,这是由于硬件配置文件设置的可用盘符太少了。解决方法:用Windows自带的记事本程序打开C盘根目录下的“Config.sys”文件,加入“LASTDRIVE=Z”,保存退出,重启后即可解决问题。

在安装双光驱的情况下安装低版本的“虚拟光碟”后,个别情况会表现为有一个或两个物理光驱“丢失”!建议:换个高版本的或其它虚拟光驱程序。

激光头老化造成

排除了灰尘造成的原因,如果光驱还不能读盘很可能是“激光头”老化了,这时就要调整光驱激光头附近的电位调节器,加大电阻改变电流的强度使发射管的功率增加,提高激光的亮度,从而提高光驱的读盘能力。

提醒:大家用小螺丝刀顺时针调节(顺时针加大功率、逆时针减小功率),以5度为步进进行调整,边调边试直到满意为止。切记不可调节过度,否则可能出现激光头功率过大而烧毁的情况.

托盘不能入仓的解决

故障分析:经比较多台同型号光驱,判定应该是出盒机构的橡胶传送带老化所致,是内部橡胶传送带的实拍图。

凡是发生进、出仓不顺畅现象,几乎均与图中橡胶带有关。由于使用日久,橡胶带老化而变得有点松,按下进仓键后,进出仓机构得不到足够的传动力,金属机心不能完全到位,导致光驱内部的处理器误判为被异物卡住,从而保护性地执行出仓动作。

解决方法:可以换一条同样规格的传送带,但费时费事费钱,而且普通传送带的质量远不能与原装产品相比;

光驱读碟自动弹出

出现这种情况跟操作系统没有直接的关系,这种故障多半是光驱的托盘进出控制电路工作不稳定引起的,也有可能是光驱的输入电源不稳定造成的,甚至上面的两种因素都有可能。为了验证光驱的输入电源是否稳定,笔者将发生故障的光驱从朋友的计算机上拆了下来,然后将它安装到自己的计算机进行测试,测试之后发现阿帕奇50XCD-ROM光驱在笔者的计算机中仍然还会发生仓门自动“吐出”故障,这就证明光驱托盘进出的控制电路肯定发生了问题。

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/1/4 1:58:10