请输入您要查询的百科知识:

 

词条 椭圆型偏微分方程
释义

椭圆型偏微分方程,简称椭圆型方程,一类重要的偏微分方程。早在1900年D.希尔伯特提的著名的23个问题中,就有三个问题是关于椭圆型方程与变分法的。八十多年来,椭圆型方程的研究获得了丰硕的成果。椭圆型方程在流体力学、弹性力学、电磁学、几何学和变分法中都有应用。拉普拉斯方程是椭圆型方程最典型的特例。

方程

elliptictype,partialdifferentialequationof

其典型代表是拉普拉斯方程与泊松方程(称Δu为拉普拉斯算子)

Δu=-4πρ(x,y,z)(2)

拉普拉斯方程的二次连续可微解称为调和函数,方程(1)有形如

的特解,其中S是一个曲面,μ为定义在S上的连续函数,(3)所定出的函数在S之外处满足(1),非齐次方程(即泊松方程)(2)有重要特解,它是以ρ为密度的体位势

当ρ在Ω内连续可微时,由(4)所确定的函数u在Ω内满足(2),在Ω外满足(1)。应用格林公式得

这说明:调和函数在区域内任何点的值,可由这函数在区域界面上的值以及法线微商来表示。

在单位球上的狄利克雷问题,对球面坐标为(ρ,θ,j)的点有

其中(θ0,j0)是积分的变元,是球面坐标。cosυ是方向(θ,j)和(θ0,j0)交角的余弦。椭圆型方程的理论已相当完整。

椭圆型偏微分方程,数值方法

Diptic partial differential equation, numerical methods

较高的精度,必须不在逐片线性函数空间中寻求近似 解,而是在逐片二次函数空间中,或更一般地,在逐 片多项式函数空间中去寻求.在这种情况下,对于具 有适当光滑性的解其精度为O(h几),这里k是所用多 项式的次数. 除三角形有限元外人们也利用四边形有限元.然 而,当四边形的边不平行于坐标轴时,必须使用等参 数技术,也就是说,开始用一种非退化变换把问题中 的有限元映射到一种标准型上(在目前情况下映射到 边平行于坐标轴的矩形上),这个变换的逆由标准有 限单元上近似解同样的函数给出.人们可以利用曲 边三角形和四边形(又要用到等参技术).当在有光滑 边界的域上用高于一阶精度的方法求解问题时这是必 要的. 除r卸ePKHH类型的有限元法外,还有另外一种所 谓的非协调有限元方法,在这类方法中不在原来空间 的子空间中寻求解.通常这种方法适用于高于二阶的 椭圆型偏微分方程问题. 有限差分法和有限元法导致有稀疏系数矩阵的高 阶线性代数方程组;人们可以压缩这些矩阵中大部分 零元素(见【川,【12】).迄今另一种近似求解椭圆型偏 微分方程边值问题的方法已经显著发展起来:边界元 法([13]). 椭圆型偏微分方程,数值方法L函州允,州目成压城别白. 闰卿坛刀,倒m州加In州加油;,几月,uT。,eeKoro Tona ypa。- .e皿e叱.e“e~e MeTo几u Pe山e妞砚,l 近似确定椭圆型偏微分方程解的一种方法.在对椭 圆型方程提出的各类问题中,边值问题和带Q‘勿条 件的问题得到了最透彻的研究.后者是不适定的,且 需要特殊的解法([l]).对椭圆型方程比较典型的提 法是边值问题,并已经提出了很多不同的数值方法求 其近似解(见【2],【31).在计算实践中网格法是最广为 传播的,其中有有限差分法(见差分法(山玉正泊份n止th. 。由),差分格式理论(differenCe schem留,theoryof), 【4」,!5」)和有限元方法(见【6」一【91).虽然这些方法 构造近似解的途径不同—前者逼近方程和边界条件 (见微分边值问题的差分边值问题逼近(approx止扭tionof a di漩比nt妞boundary耐ue problon bydiffi泊泊份bot川户 血州稚lue problen犯)),而后者逼近所求解的本身— 然而最终确定近似解的代数方程组常常基于类似的想 法,并在一些情况下完全一致. 有限差分法的本质如下.用离散点(结点)集代 替原问题中自变量连续变化的区域,并称此离散点集 为网格(颤d);用差分关系逼近出现在微分方程和边 界条件中的导数;于是微分方程的边值问题就被一个 代数方程组(一种差分格式(differen沈岌为~))所取 代.如果所得到的差分边值问题是可解的(可能在足 够细的网格上)并且如果在充分加细的网格上

相关图书

内容简介

《二阶椭圆形偏微分方程引论》本书运用几类具体的半线性椭圆型方程系统地介绍了反应扩散方程中的重要问题。主要内容包括:带有扩散的两物质自催化反应模型,带有非单调反应函数的两种群食饵-捕食模型,带有扩散的三种群周期互惠模型,带有扩散的三种群周期竞争模型以及这些模型解的存在性、不存在性、稳定性、分歧、先验估计和解的渐近行为等。

本书可供理工科大学数学、应用数学和其它相关专业的大学生、研究生、教师以及有关的科学工作者参考。

图书目录

第一章 基本理论1

第一节 二阶偏微分方程的极值原理和上下解方法1

第二节 特征值问题和特征值的变分原理3

第三节 Banach空间上的拓扑度理论和不动点指数理论3

第四节 Banach空间上的分歧理论和稳定性理论4

第二章 带有扩散的两物质自催化反应模型7

第一节 引言7

第二节 正解的基本性质8

第三节 非常数正解的不存在性13

第四节 常数正解的稳定性14

第五节 发自常数正解处的分歧解的存在性、唯一性及稳定性16

第六节 非常数正解的存在性25

第七节 全局分歧分析30

第三章 带有非单调反应函数的两种群食饵-捕食模型35

第一节 引言35

第二节 平凡解与半平凡解的稳定性36

第三节 发自半平凡解处的分歧解的存在性、唯一性及稳定性38

第四节 发自平凡解处的分歧解的存在性、唯一性及稳定性44

第五节 正解的存在性49

第四章 带有扩散的三种群周期互惠模型61

.第一节 引言61

第二节 正解的存在性63

第三节 正解的先验估计66

第四节 一类具体的三种群互惠平衡态模型的共存态69

第五章 带有扩散的三种群周期竞争模型76

第一节 引言76

第二节 正解的先验估计77

第三节 正解的渐近性81

附录91

参考文献92

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2025/2/4 10:54:50