词条 | 随机游走 |
释义 | 释义英文:random walk 定义:即随机游走,其概念接近于布朗运动,是布朗运动的理想数学状态。 核心概念:任何无规则行走者所带的守恒量都各自对应着一个扩散运输定律。 无规则行走与扩散定律无规则行走无规则行走在任意尺度上都具有相似结构。例如一个在二维(d=2)格子上游动,每一定时间以相同概率移动到其相邻位置,其轨迹即二维随机轨迹,同样可以扩展到三维。举个例子,你取2 个硬币一个1 分,一个5 分。你每五秒,将2 个硬币掷一次,1 分硬币用于左右移动标记,5 分硬币用于前后移动标记,绘出路径就是你的二维无规则行走。假如你走了1000 步那么你回到起点的方式M0 有多少种?那么么必须正反面各500 次。即,对一个特定投币序列将投出正面的序号列出清单,清单包括500 个不同的整数这个量为:1000!/500!,而任意两张清单只在元素存在换序的差异,则实际上并无区别所以必须除以可能的置换数500!。M0=1000!/(500!×500!),“!”表示阶乘。回到原点的概率P0=M0/ M,这个概率满足二项式分布。对于所有M 种可能可以用斯特林公式:lnM!≈M lnM-M + ½ln(2πM)。通过计算我们知道回到起点的概率很低。 要想找出第1000 步后你走了多远,你可以列出1000 次投币的结果序列然后对所有(x1000)的2次方 求平均,得到1000 步后的均方位置;这显然太复杂,好在还有另外的方法。我们可以将所有2的N次方 种可能行走一一配对,每一配对由相同的x(N-1 );{(N-1)为x的下脚标}的两个可能性相等的行走组成,只是最后一步不同。N 步随机性走的均方位移比N-1 步大a的2次方,后者又比N-2 步大a的2次方,均方位移=Na的2次方。a 为格子间隔,每一个格子点上游动的可能方向有2d 个(d 是格子维数)单位时间内游动的方差为D=a2/(2d)t ,D 为扩散系数(一些参考书中也用字母K 表示,a后面的2为次方,后面凡数字在字母后面都表示指数)。对于一维无规则行走的均方位移随时间线性增加2Kt,扩散常数D=a2/(2Δt)。这个逻辑可以推广到二维和三维。 图1.130 醉酒人的无规则行走也许行走若干个步后他会回到出发点,但这样的概率非常小。他离开酒吧的距离满足扩散定律。 图1.131(a)二维无规则行走;(b)当步骤更多,步幅更低时二维无规则行走;(c)三维无规则行走。 扩散定律扩散以一个初始分布释放大量的无规则行走,观察他们的密度就会得到分布函数。1855 年法国生理学家Fick 提出了描述扩散规律的基本公式— 菲克定律,在一维(如x 方向扩散的)粒子流密度(即单位时间内在单位截面上扩散的粒子流)J N 与粒子数密度梯度dc/dx成正比。扩散通量J=-D×(dc/dx),称为菲克定律又称扩散第一定律。进一步消掉J,找出浓度随时间的变化关系dc/dt=D(d2c/dx2)其中2都是上角标,称为菲克第二定律;在高等教材中可以写成偏导的形式d 换成ә。 任何单次步骤不会遵从扩散定律,但只要等待足够长的时间和步骤,便可精确预测无规则行走。布朗运动就是无规则行走这一现象的宏观观察。通过扩散定律我们将布朗运动的微观参数(步长a 和间隔时间Δt)与宏观实验可观测量(扩散常数D)建立了联系。然而一个方程无法解出两个未知量,测量K 不足以得到a 和Δt。这意味着还需要其他能够说明摩擦与扩散定量联系的公式。 扩散定律是跨学科的普适定律 对无规则行走的数学处理使用了过于简化的假设,扩散定律是普适的,只要给定独立随机行走的某种分布,它就不依赖于具体的模型。涨落是随机的、混沌的,无规则行走的结果就是扩散,这包括物质扩散、动量扩散、热量扩散等。这也意味着结晶学、天文学、生物学、气象学、流体力学、经济学都将用到扩散定律。扩散定律是普适的,在这里我们作为一个结论而接受下来,具体的一系列数学证明过程给予舍弃。感兴趣的朋友可以参见任何一本物理化学教材或分形教材。 扩散定律与守恒量 扩散是一个随机涨落的过程,在本科一年级的物理课程已经提及一个落体最终会达到取决于摩擦的“末速度”。以悬浮颗粒来考虑摩擦,颗粒虽然受随机碰撞,仍获得了一个净漂移速度。v=f/ζ ,ζ=2m/Δt 其中ζ是黏性摩擦系数,与扩散系数一样可以实验测量。摩擦源于物理实体与周围热致扰动的流体随机碰撞。每一种颗粒当置于不同的溶剂中时都会有相应特征D(扩散系数)和ζ。球体的黏性摩擦系数与尺寸间存在简单关系,ζ=6πηR 斯托克斯(stokes)公式;R 是颗粒半径,η是常数称为流体黏度(水的黏度为10-3kg/ms)。由于有效步长a 和Δt 无法观察,要想证实扩散与粘滞仅仅是热运动的两个方面,我们还需要第三个关系。爱因斯坦注意到a 和Δt 的关系,按照推到理想气体定律的思路:(a/Δt)2=kBT/m,联合起来就构成爱因斯坦第一扩散公式:ζD=kBT。这个关系由爱因斯坦在1905 年的硕士论文中得到,这表明颗粒位置的涨落与摩擦阻力相联系,并且这个关系是定量普适的。越小的颗粒受到摩擦阻力越小,但扩散系数会更大,更容易扩散。ζD 的乘积提供了一个可证伪的预言来检验“热即分子的无规则运动”;这个与预言提出不久就立刻被佩兰(Jeans Perrin)和其他人的实验所证实。任何无规则行走携带的守恒量都各自对应一个扩散定律。 理想状态无规则行走只是布朗运动的理想状态 在很多系统都存在不同类型的无规则行走,他们都具有相似结构。单个的随机事件我们不可预测,但随机大量的群体行为,却是精确可知的,这就是概率世界的魅力,在偶然中隐含着必然。随机性造成了低尺度下的差异性,但在高尺度下又表现为共同的特征的相似性。按照概率的观点“宇宙即是所有随机事件概率的总和”。 相关研究椭球体布朗运动相关研究 虽然无规则行走导致的扩散满足以上的方程并有普适性,但假如这样的的“无规则行走”某个方向,并不是完全随机呢?以前面提到的投硬币为例子,一个1 分,一个5 分,其中1 分硬币破损使得正反面概率不相等,并且随机若干步后,将1 分和5 分硬币所代表的方向对调;那么二维的无规则行走路径必然发生改变。当年爱因斯坦的论文是探讨球形颗粒的布朗运动,我们知道球形颗粒的旋转并不影响他的平移,旋转的非球形例子却会影响它的平移。实际中,大量布朗运动的颗粒都是非球形的,所以更多的模型不得不考虑随机转动问题。其实即使对球形颗粒在黏性流体中,也要考虑随机转动产生的转动摩擦系数对扩散的影响。 宾夕法尼亚大学的网站报道,研究人员用数字视屏显微镜观察水中悬浮椭球体的随机旋转和移动。球形颗粒扩散分布将随时间逐渐变宽,为高斯型浓度分布;而椭球颗粒不满足高斯分布。随着布朗运动的深入研究,越来越多的实验表明布朗运动颗粒的行为与爱因斯坦一个世纪前的假设不同。2005 年10 月的物理评论快报,提到现在实验室可以跟踪布朗运动颗粒的测量精度达到微秒和纳米的尺度。科学家们也发现活细胞的许多基本过程由布朗运动所驱动。试验结果描述布朗运动的方程式偏离标准理论的,实际的布朗运动要比理想化的无规则行走要复杂。 图1.132 椭球体在水中的布朗运动。标准的无规则行走,色彩标记显示出椭球的耦合方向和位移,并清楚的表明椭球的扩散其长轴比其短轴扩散更快。(此图来源于宾夕法尼亚大学网站关于布朗运动的研究) 还原论观点的缺憾布朗运动是分形的典型例子,理想状态下的布朗运动是高斯正态分布,当然更多的布朗运动研究细节我们不做探讨。任何事物都不是孤立的,都是相互作用、相互联系的。用还原论观点将系统一个个隔离是对事物的理想化,是在一定程度上精确定量描述系统,当然这也是认识事物必经的步骤,但是有缺陷的。 哥德尔不完备定理,以及认识主体对客体的反映永远存在这不完备性。我观赞同哥本哈根学派的主张“自然科学不是自然界本身,而是人和自然界间关系的一部分,因而依赖人”。无论用还原论还是整体论都是用抽象去阐明物质的特性,这些抽象在任何时候仅仅是近似地、有条件的把握了物质的本质,不是世界的全部。布朗运动研究的历史,具有典型性,有点像整个科学研究史的缩影。人对事物的认识总是渐进的,不断深入的,随着认识深入会发现各种模型都是理想化的条件。这种认识永远无法走向事物的绝对认识,因为孤立的事物是不存在的,所有的系统都是宇宙整体的一部分。 讨论之所以在大尺度上随机事件都会表现一致性趋向,而低尺度下却表现差异和不可预知性。在我看来也是由于人对自然界的抽象认识,并不是自然界本身。对自然的客观反映,并不是自然界的全部。虽然我本人反对操作主义,但部分思想是有启发的,像“物是操作的总和”、“物的属性在操作中寻求意义”等等。按照操作主义,科学真正的物理实在不存在于科学实验观测之外。诚然这是错误的,不可感知并不意味着不存在,但操作主义从另一个角度向我们说明里离我们观察操作越远的尺度,我们对这些尺度下的事物的客观反映越模糊。比如普朗克尺度下的时间与空间特性、宇宙大尺度上星系间的关系以及融合、又或者存在更高尺度上驱动星系演化的事物等等。我们都还无法描述但不意味着他们不存在。既然世界是这样一个整体,放大蝴蝶效应我甚至相信一个原子的行为可能影响一个星系(我把它称为强蝴蝶效应),当然这个过程要花费的时间也许超过数百亿倍宇宙的年龄。 其他类型的无规则行走P2P与无规则行走许多系统都有类似无规则行走的例子。例如:P2P (Peer-to-Peer 对等计算,简称P2P)搜索中Random Walk 搜索方法在随机漫步中,请求者发出K 个查询请求给随机挑选的K 个相邻节点。然后每个查询信息在以后的漫步过程中直接与请求者保持联系,询问是否还要继续下一步。如果请求者同意继续漫步,则又开始随机选择下一步漫步的节点,否则中止搜索又开始随机选择下一步漫步的节点,否则中止搜索又开始随机选择下一步漫步的节点,否则中止搜索。 图1.133 P2P 搜索中Random Walk 搜索方法搜索信息的扩散。 高分子与无规则行走高分子的形状类似于无规则行走,把高分子想象成由N 个单元排成的长串。每个单元都由一个完全柔软的铰链与下一个单元相连,就像一串回形针。热平衡时,这些铰链全部处于随机选取的角度,高分子每一时刻的形状都会不同,每一时刻都是一个无规则行走。如果合成的高分子由不同数量的单元组成,线团尺寸的增加正比于其摩尔质量的平方根。 如果单元间存在着强烈的相互吸引力,高分子将不再采取无规则行走构象而是密堆成一个球体,例如血清球蛋白。可以通过比较高分子的体积和假设所有密堆占的最小体积,将高分子分为“紧密型”和“舒展型”。即使高分子不坍缩为团,单体也并非真正处于任何位置,两个单体不可能占据空间同一点,这是自回避现象。这样标度指数(线团尺寸的增加正比于其摩尔质量的指数)就由0.5 变为其他值,所以这个值往往略大一点。不管精确值是什么,高分子运动的复杂性可涌现出简单的标度关系。 梅尔(B.Maier)和雷德勒尔(J.Radler)首先构建了一个带正电的表面并让他吸附带负电荷的单链DNA 然后对被吸附的DNA 分子不断变化的构象进行连续快照(DNA 带有荧光染色)。DNA 分子可以是自交叉的但每次出现这种情况都是一个消耗结合能的过程,在交叉点处那条带负电的链并不与带正电的表面接触,而是被强迫与另一条带负电的链接触。因此我们可以认为线团尺寸遵从二维无规自回避行走标度律,标度指数为0.75。一旦结合在平面上,DNA 链就开始各种蜿蜒构象间的变化,梅尔和雷德勒尔计算出了高分子链的回转半径与首末端距离的均方有关,标度指数0.79 接近于理论的0.75。(更多内容参见菲利普·纳尔逊的《生物物理学:能量、信息、生命》) 金融市场的无规则行走股票市场由无数的亚单元即投资者构成。每个投资者为个人经验、感情和不完全信息所左右,其决策立足于其他投资的的决策以及汇总的信息中的随机事件,在经济学上研究这样的决策叫做博弈论(game theory)。当然单个投资者的行为不可预测,但长期来看,股票价格作某种带漂移的无规则行走。驱动这个行走的包括投资者的突发奇想、自然灾难、公司倒闭、以及其他不可预知的新闻事件。为什么行走会是随机?假如一个分析员发现12 月末股价会上扬,到1 月初在下跌,一旦这种规律被市场参与者得知自然人们会选择这段时间内抛出股票,这一行为导致了股票下跌,消除了这种效应的可能。股票的公平原则即要求公开信息资源,使得一个投资者没有更多战胜其他投资者的有用信息。在信息完全公开的情况下长时间的股票曲线应该近似于一维无规则行走。 任何无规则行走者所带的守恒量都各自对应着一个扩散运输定律。比如粒子数守恒对应物质扩散,能量守恒对应热传导定律,热传导定律可以看成另一条菲克型定律。 随机游走模型随机游走的来源随机游走本来是“物理上布朗运动”相关的分子,还是微观粒子的运动形成的一个模型。 现在过多的谈到随机游走假说是数理金融中最重要的假设,它把有效市场的思想与物理学中的布朗运动联系起来,由此而来的一整套的随机数学方法成为构建数理金融的基石。(其研究的机理已经在股票研究中应用很广泛) 定义“随机游走”(random walk)是指基于过去的表现,无法预测将来的发展步骤和方向。这一术语应用到股市上,则意味着股票价格的短期走势不可预知,意味着投资咨询服务、收益预测和复杂的图表模型全无用处。在华尔街上,“随机游走”这个名词是个讳语,是学术界杜撰的一个粗词,是对专业预言者的一种侮辱攻击。若将这一术语的逻辑内涵推向极致,便意味着一只戴上眼罩的猴子,随意向报纸的金融版面掷一些飞镖,选出的投资组合就可与投资专家精心挑选出的一样出色 模型解释随机游走模型的提出是与证券价格的变动模式紧密联系在一起的。最早使用统计方法分析收益率的著作是在 1900年由路易·巴舍利耶(Louis Bachelier)发表的,他把用于分析赌博的方法用于股票、债券、期货和期权。在巴舍利耶的论文中,其具有开拓性的贡献就在于认识到随机游走过程是布 朗运动。1953年,英国统计学家肯德尔在应用时间序列分析研究股票价格波动并试图得出股票价格波动的模式时,得到了一个令人大感意外的结论:股票价格没 有任何规律可寻,它就象“一个醉汉走步一样,几乎宛若机会之魔每周仍出一个随机数字,把它加在目前的价格上,以此决定下一周的价格。”即股价遵循的是随机 游走规律。 随机游走模型有两种,其数学表达式为 : Y t =Y t-1 +e t ① Y t =α+Y t-1 +e t ② 式中: Y t 是时间序列(用股票价格或股票价格的自然对数表示); e t 是随机项,E(e t )=0;Var(e t )=σ 2 ; α是常数项。 模型①称为“零漂移的随机游走模型”,即当天的股票价格是在前一天价格的基础上进行随机变动。股票价格差全部包含在随机项 e t 中。 模型②称为“α漂移的随机游走模型”,即当天的股票价格是在前一天价格的基础上先进行一个固定的α漂移,再进行随机变动。股票价格差包括两部分,一部分是固定变动α,另一部分也是随机项 e t 。 由以上随机游走模型可以看出,证券价格的时间序列将呈现随机状态,不会表现出某种可观测或统计的确定趋势。即证券价格的变动是不可预测的,这恰恰是随机 游走模型所揭示的证券价格变动 规律 的中心思想。那么,随机游走模型下所确定的证券价格的这一变动模式与资本市场的效率性之间是什么关系呢?随机变动的证券价格,不仅不是市场非理性的证据, 而正是众多理性的投资者开发有关信息,并对其做出反映的结果。事实上,如果证券价格的变动是可以预测的,那才真正说明市场的无效率和非理性。也就是说,若 证券市场是有效率的,证券价格应当真正符合随机游走模型。 t)=0,而这正是独立随机过程所必须的条件。然而当H≠1/2时,不管t取何值,C(t)≠0。分数布朗运动的这一特征,导致了状态持续性或逆状态持续性。 当H>1/2时,存在状态持续性,即在某一时刻t以前存在上升(或下降)趋势隐含着在时刻t以后总体上也存在着上升(或下降)的趋势;反之,当H<1/2 时存在逆状态持续性,即在某一时刻t以前存在上升(或下降)趋势隐含着在时刻t以后总体上也存在着下降(或上升)的趋势 进一步地,应用R/S分析法,可以确定信息的两个重要方面,Hurst指数H和平均的周期长度。周期的存在对于进一步的讨论分析具有重要影响。当H≠1 /2时,概率分布不是正态分布;当1/2<H<1时,时间序列是分形。分维时间序列不同于随机游走,它是有偏的随机过程,其偏离的程度取决于H大于1/2 的程度,并且随着H逐步逼近1状态持续性逐步增强。 值得指出的是,R/S分析法是十分有效的工具,不必假定潜在的分布是高斯分布。H=1/2并不能说明时间序列是一个高斯随机游走,仅表明不存在长期记忆。 如果随机游走不再适用,那么许多数量分析的方法将失去效用,尤其是CAPM和以方差或波动程度度量的风险概念。 通过以上的论述,得到下列基本结论: 1.对有效市场假说,α必须始终等于2;而对分形市场分析,α可以在1到2之间变化。这是有效市场假说与分形市场分析对市场特性认识的主要区别。正是由于α的分数维性质充分反映了市场本身所具有的特性 2.分形市场分析不必依赖于独立、正态或方差有限的假设。 3.应用R/S分析法,可以确定信息的两个重要方面,Hurst指数H和平均的周期长度。 4.公众对于信息以非线性方式作出反应,因而有偏的随机游走是市场的常态,表现为分数布朗运动。 5.对于随机游走的偏离程度取决于指数H。 本文从对EMH的产生及其发展讨论出发,从分形的角度探讨市场特性的分形市场分析方法及其所反映的市场特性,推广了资本市场理论,认为市场是分形的,服 从分数布朗运动,即有偏的随机游走,其研究方法可以采用R/S分析法。公众对于信息以非线性的方式作出反应,因而呈现出对信息的不一致性消化、吸收,导致 对随机游走的偏离,并表现为市场的常态。 |
随便看 |
|
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。