请输入您要查询的百科知识:

 

词条 四边形蝴蝶定理
释义

若四边形一条对角线平分另一对角线(比如此图中的AD平分BC,不要求BC平分AD),过其交点G的两条直线PR和QS,与四边交于P.R.Q.S,则连线PQ与SR与被平分的对角线BC的两个交点E.F到对角线交点G距离相等。

证明过程中用到共边比例定理、共角比例定理。

如图:BG=CG,求证:EG=FG

连接CP,BS,BR,CQ

EG/BE*CF/FG=S△PGQ/S△PBQ* S△SCR/S△SGR=S△ABD/S△PBQ * S△SCR/S△ACD * S△PGQ/S△SGR

=AB*BD/BP*BQ * SC*CR/AC*DC * PG*QG/RG*SG

=AB*BD/BP*BQ * SC*CR/AC*DC * PG/RG*QG/SG

=S△ABC*S△BCD/S△BCP*BCQ * S△BCS*S△BCR/S△ABC*S△BCD * S△BCP/S△BCR*S△BCQ/S△BCS

=1

EG*CF=FG*BE

∵EG+BE=CF+FG

∴EG=GF

随便看

 

百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。

 

Copyright © 2004-2023 Cnenc.net All Rights Reserved
更新时间:2024/12/23 20:41:50