词条 | 斯坦纳-雷米欧司定理 |
释义 | 斯坦纳-雷米欧司定理: 两内角的平分线相等的三角形是等腰三角形 证明一: 已知:三角形ABC,角B、角C的平分线是BE、CD作∠BEF=∠BCD;并使EF=BC ∵BE=DC ∴△BEF≌△DCB,BF=BD,∠BDC=∠EBF 设∠ABE=∠EBC=α,∠ACD=∠DCB=β ∠FBC=∠BDC+α=180°-2α-β+α=180°-(α+β); ∠CEF=∠FEB+∠CEB=β+180-2β-α=180°-(α+β); ∴∠FBC=∠CEF ∵2α+2β<180°,∴α+β<90° ∴∠FBC=∠CEF>90° ∴过C点作FB的垂线和过F点作CE的垂线必都在FB和CE的延长线上. 设垂足分别为G、H; ∠HEF=∠CBG; ∵BC=EF, ∴Rt△CGB≌Rt△FHE ∴CG=FH,BG=HE 连接CF ∵CF=FC,FH=CG ∴Rt△CGF≌△FHC ∴FG=CH,∴BF=CE,∴CE=BD ∵BD=CE,BC=CB,∴△BDC≌△CEB ∴∠ABC=∠ACB ∴AB=AC 证明二: 设二角的一半分别为α、β sin(2α+β)/ sin2α= BC/CE = BC/BD = sin(α+2β)/ sin2β, ∴2sinαcosαsin(α+2β) - 2sinβcosβsin(2α+β) =0 →sinα[sin2(α+β)+sin 2β]- sinβ[sin2(α+β)+ sin2α]=0 →sin2(α+β)[sinα-sinβ]+2 sinαsinβ[cosβ- cosα]=0 →sin [(α-β)/2][sin2(α+β) cos[(α+β)/2] + 2 sinαsinβsin [(α+β)/2]=0 ,∴sin[(α-β)/2]=0 ∴α=β,∴AB=AC. 证明三: 用张角定理: 2cosα/BE=1/BC+1/AB 2cosβ/CD=1/BC+1/AC 若α>β 可推出AB>AC矛盾! 若α<β 可推出AB<AC矛盾! 所以AB=AC 定理来源: 1840年,德国数学家雷米欧斯给当时的大数学家斯图姆的一封信中说到:“几何题在没有证明之前,很难说它是难还是容易。等腰三角形的两底角平分线相等,初中生都会证明。但反过来,三角形的两内角平分线相等,这个三角形一定是等腰三角形吗?我至今还没想出来。”此后,斯图姆又向许多数学家提出了这个问题,请求给出一个纯几何证明。一年多后,瑞士达几何学家斯坦纳(1796-1873)首次证明了它,于是,这个问题以“斯坦纳-雷米欧斯”定理而闻名于世。 后世发展: 斯坦纳的证明发表后,引起了数学界极大反响。论证这个定理的文章发表在1842年到1864年的几乎每一年的各种杂志上。后来,一家数学刊物公开征解,竟然收集并整理了60多种证法,编成一本书。直到1980年,美国《数学老师》月刊还登载了这个定理的研究现状,随后又收到了2000多封来信,增补了20多种证法并收到了一个最简单的直接证法。经过几代人的努力,100多年的研究,“斯坦纳-雷米欧斯”定理已成为数学百花园中最惹人喜爱的瑰丽花朵! |
随便看 |
百科全书收录4421916条中文百科知识,基本涵盖了大多数领域的百科知识,是一部内容开放、自由的电子版百科全书。